This book introduces microelectromechanical systems (MEMS) packaging utilizing polymers or thin films – a new and unique packaging technology. It first investigates the relationship between applied load and opening displacement as a function of benzocyclobutene (BCB) cap size to find the debonding behavior, and then presents BCB cap deformation and stress development at different opening displacements as a function of BCB thickness, which is a criterion for BCB cap transfer failure.
Transfer packaging techniques are attracting increasing interest because they deliver packaging caps, from carrier wafers to device wafers, and minimize the fabrication issues frequently encountered in thin-film or polymer cap encapsulation. The book describes very-low-loss polymer cap or thin-film-transfer techniques based on anti-adhesion coating methods for radio frequency (RF) (-MEMS) device packaging. Since the polymer caps are susceptible to deformation due to their relatively low mechanical stiffness during debonding of the carrier wafer, the book develops an appropriate finite element model (FEM) to simulate the debonding process occurring in the interface between Si carrier wafer and BCB cap. Lastly, it includes the load–displacement curve of different materials and presents a flexible polymer filter and a tunable filter as examples of the applications of the proposed technology.Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : StainesBook, Weybridge, SURRE, Royaume-Uni
N° de réf. du vendeur SpeedList-SL644
Quantité disponible : 2 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces microelectromechanical systems (MEMS) packaging utilizing polymers or thin films - a new and unique packaging technology. It first investigates the relationship between applied load and opening displacement as a function of benzocyclobutene (BCB) cap size to find the debonding behavior, and then presents BCB cap deformation and stress development at different opening displacements as a function of BCB thickness, which is a criterion for BCB cap transfer failure.Transfer packaging techniques are attracting increasing interest because they deliver packaging caps, from carrier wafers to device wafers, and minimize the fabrication issues frequently encountered in thin-film or polymer cap encapsulation. The book describes very-low-loss polymer cap or thin-film-transfer techniques based on anti-adhesion coating methods for radio frequency (RF) (-MEMS) device packaging. Since the polymer caps are susceptible to deformation due to their relatively low mechanical stiffness during debonding of the carrier wafer, the book develops an appropriate finite element model (FEM) to simulate the debonding process occurring in the interface between Si carrier wafer and BCB cap. Lastly, it includes the load-displacement curve of different materials and presents a flexible polymer filter and a tunable filter as examples of the applications of the proposed technology. 115 pp. Englisch. N° de réf. du vendeur 9783319778716
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces a new and unique packaging technologyExplains microelectromechanical systems (MEMS) packaging utilizing polymers or thin filmsDiscusses finite element method (FEM) modeling to explain the technology from a theoretical perspective. N° de réf. du vendeur 220289808
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26376476046
Quantité disponible : 4 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces microelectromechanical systems (MEMS) packaging utilizing polymers or thin films - a new and unique packaging technology. It first investigates the relationship between applied load and opening displacement as a function of benzocyclobutene (BCB) cap size to find the debonding behavior, and then presents BCB cap deformation and stress development at different opening displacements as a function of BCB thickness, which is a criterion for BCB cap transfer failure.Transfer packaging techniques are attracting increasing interest because they deliver packaging caps, from carrier wafers to device wafers, and minimize the fabrication issues frequently encountered in thin-film or polymer cap encapsulation. The book describes very-low-loss polymer cap or thin-film-transfer techniques based on anti-adhesion coating methods for radio frequency (RF) (-MEMS) device packaging. Since the polymer caps are susceptible to deformation due to their relatively low mechanical stiffness during debonding of the carrier wafer, the book develops an appropriate finite element model (FEM) to simulate the debonding process occurring in the interface between Si carrier wafer and BCB cap. Lastly, it includes the load-displacement curve of different materials and presents a flexible polymer filter and a tunable filter as examples of the applications of the proposed technology. N° de réf. du vendeur 9783319778716
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 369569361
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18376476036
Quantité disponible : 4 disponible(s)