Articles liés à Machine Learning in Complex Networks

Machine Learning in Complex Networks - Couverture souple

 
9783319792347: Machine Learning in Complex Networks

Synopsis

This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in thisbook, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 133,40

Autre devise

EUR 2,28 expédition vers Etats-Unis

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 114,02

Autre devise

EUR 2,28 expédition vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9783319172897: Machine Learning in Complex Networks

Edition présentée

ISBN 10 :  3319172891 ISBN 13 :  9783319172897
Editeur : Springer International Publishin..., 2016
Couverture rigide

Résultats de recherche pour Machine Learning in Complex Networks

Image fournie par le vendeur

Silva, Thiago Christiano; Zhao, Liang
Edité par Springer, 2018
ISBN 10 : 3319792342 ISBN 13 : 9783319792347
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 33692356-n

Contacter le vendeur

Acheter neuf

EUR 114,02
Autre devise
Frais de port : EUR 2,28
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

Christiano Silva, Thiago; Zhao, Liang
Edité par Springer, 2018
ISBN 10 : 3319792342 ISBN 13 : 9783319792347
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar3113020105934

Contacter le vendeur

Acheter neuf

EUR 112,90
Autre devise
Frais de port : EUR 3,45
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Thiago Christiano Silva
ISBN 10 : 3319792342 ISBN 13 : 9783319792347
Neuf Paperback

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in thisbook, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas. This book presents the features and advantages offered by complex networks in the machine learning domain. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783319792347

Contacter le vendeur

Acheter neuf

EUR 116,38
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Liang Zhao
ISBN 10 : 3319792342 ISBN 13 : 9783319792347
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this book, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas. 352 pp. Englisch. N° de réf. du vendeur 9783319792347

Contacter le vendeur

Acheter neuf

EUR 106,99
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Silva, Thiago Christiano; Zhao, Liang
Edité par Springer, 2018
ISBN 10 : 3319792342 ISBN 13 : 9783319792347
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 33692356

Contacter le vendeur

Acheter D'occasion

EUR 133,40
Autre devise
Frais de port : EUR 2,28
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

Christiano Silva, Thiago; Zhao, Liang
Edité par Springer, 2018
ISBN 10 : 3319792342 ISBN 13 : 9783319792347
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783319792347_new

Contacter le vendeur

Acheter neuf

EUR 123,63
Autre devise
Frais de port : EUR 13,81
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Thiago Christiano Silva|Liang Zhao
ISBN 10 : 3319792342 ISBN 13 : 9783319792347
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book combines two important and popular research areas: complex networks and machine learning This book contains not only fundamental background, but also recent research resultsNumerous illustrative figures and step-by-step examples h. N° de réf. du vendeur 448754711

Contacter le vendeur

Acheter neuf

EUR 100,58
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Christiano Silva, Thiago; Zhao, Liang
Edité par Springer, 2018
ISBN 10 : 3319792342 ISBN 13 : 9783319792347
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 349. N° de réf. du vendeur 26379051251

Contacter le vendeur

Acheter neuf

EUR 154,28
Autre devise
Frais de port : EUR 3,45
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Christiano Silva, Thiago; Zhao, Liang
Edité par Springer, 2018
ISBN 10 : 3319792342 ISBN 13 : 9783319792347
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand pp. 349. N° de réf. du vendeur 383804204

Contacter le vendeur

Acheter neuf

EUR 161,36
Autre devise
Frais de port : EUR 7,49
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Liang Zhao
ISBN 10 : 3319792342 ISBN 13 : 9783319792347
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in thisbook, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas. N° de réf. du vendeur 9783319792347

Contacter le vendeur

Acheter neuf

EUR 106,99
Autre devise
Frais de port : EUR 62,67
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 4 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre