This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds, optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis, image classification, action recognition, and motion tracking.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr. Hà Quang Minh is a researcher in the Pattern Analysis and Computer Vision (PAVIS) group, at the Italian Institute of Technology (IIT), in Genoa, Italy.
Dr. Vittorio Murino is a full professor at the University of Verona Department of Computer Science, and the Director of the PAVIS group at the IIT.Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking. 224 pp. Englisch. N° de réf. du vendeur 9783319831909
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Showcases Riemannian geometry as a foundational mathematical framework for solving many problems in machine learning, statistics, optimization, computer vision, and related fields Describes comprehensively the state-of-the-art theory and algorith. N° de réf. du vendeur 458623538
Quantité disponible : Plus de 20 disponibles
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Algorithmic Advances in Riemannian Geometry and Applications | For Machine Learning, Computer Vision, Statistics, and Optimization | Vittorio Murino (u. a.) | Taschenbuch | xiv | Englisch | 2018 | Springer Nature Switzerland | EAN 9783319831909 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 114237811
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -This book presents a selection of the most recent algorithmic advances in Riemanniangeometry in the context of machine learning, statistics, optimization, computervision, and related fields. The unifying theme of the different chapters in the bookis the exploitation of the geometry of data using the mathematical machinery ofRiemannian geometry. As demonstrated by all the chapters in the book, when the datais intrinsically non-Euclidean, the utilization of this geometrical information can leadto better algorithms that can capture more accurately the structures inherent in thedata, leading ultimately to better empirical performance. This book is not intended tobe an encyclopedic compilation of the applications of Riemannian geometry. Instead, itfocuses on several important research directions that are currently actively pursued byresearchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionarylearning and sparse coding on manifolds. Examples of applications include novel algorithmsfor Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 224 pp. Englisch. N° de réf. du vendeur 9783319831909
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking. N° de réf. du vendeur 9783319831909
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 222. N° de réf. du vendeur 26380261327
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 222. N° de réf. du vendeur 383642640
Quantité disponible : 4 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : New. New. book. N° de réf. du vendeur ERICA80033198319096
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 222. N° de réf. du vendeur 18380261317
Quantité disponible : 4 disponible(s)