This book summarizes the recent breakthroughs in hardware implementation of neuro-inspired computing using resistive synaptic devices. The authors describe how two-terminal solid-state resistive memories can emulate synaptic weights in a neural network. Readers will benefit from state-of-the-art summaries of resistive synaptic devices, from the individual cell characteristics to the large-scale array integration. This book also discusses peripheral neuron circuits design challenges and design strategies. Finally, the authors describe the impact of device non-ideal properties (e.g. noise, variation, yield) and their impact on the learning performance at the system-level, using a device-algorithm co-design methodology.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Shimeng Yu He received the B.S. degree in microelectronics from Peking University, Beijing, China, in 2009 and the M.S. degree and Ph.D. degree in electrical engineering from Stanford University, Stanford, CA, USA, in 2011 and in 2013, respectively. He joined Arizona State University, Tempe, AZ, USA, as an assistant professor of electrical engineering and computer engineering in 2013.
His research interests are emerging nano-devices and circuits with a focus on the resistive memories for different applications including neuro-inspired computing, monolithic 3D integration, hardware security, radiation-hard electronics, etc. He has published more than 50 journal papers and more than 90 conference papers with citations of more than 4000 and H-index of 28 according to Google Scholar.
Among his honors, he is a recipient of the Stanford Graduate Fellowship from 2009 to 2012, the IEEE Electron Devices Society Masters Student Fellowship in2010, the IEEE Electron Devices Society Ph.D. Student Fellowship in 2012, the DOD-DTRA Young Investigator Award in 2015, and the NSF Faculty Early CAREER Award in 2016 on the topic of scaling up resistive synaptic arrays for neuro-inspired computing.
He did summer internship in IMEC, Belgium, in 2011 and the IBM TJ Watson Research Center in 2012. He held visiting faculty position in the Air Force Research Laboratory in 2016. He has been serving the Technical Committee of Nanoelectronics and Gigascale Systems, IEEE Circuits and Systems Society, since 2014.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 33689420-n
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur GB-9783319853680
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 33689420-n
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 33689420
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 33689420
Quantité disponible : 1 disponible(s)
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. This book summarizes the recent breakthroughs in hardware implementation of neuro-inspired computing using resistive synaptic devices. The authors describe how two-terminal solid-state resistive memories can emulate synaptic weights in a neural network. Readers will benefit from state-of-the-art summaries of resistive synaptic devices, from the individual cell characteristics to the large-scale array integration. This book also discusses peripheral neuron circuits design challenges and design strategies. Finally, the authors describe the impact of device non-ideal properties (e.g. noise, variation, yield) and their impact on the learning performance at the system-level, using a device-algorithm co-design methodology. Softcover reprint of the original 1st ed. 2017. N° de réf. du vendeur LU-9783319853680
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book summarizes the recent breakthroughs in hardware implementation of neuro-inspired computing using resistive synaptic devices. The authors describe how two-terminal solid-state resistive memories can emulate synaptic weights in a neural network. Readers will benefit from state-of-the-art summaries of resistive synaptic devices, from the individual cell characteristics to the large-scale array integration. This book also discusses peripheral neuron circuits design challenges and design strategies. Finally, the authors describe the impact of device non-ideal properties (e.g. noise, variation, yield) and their impact on the learning performance at the system-level, using a device-algorithm co-design methodology. 284 pp. Englisch. N° de réf. du vendeur 9783319853680
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides single-source reference to recent breakthroughs in resistive synaptic devices, not only at individual cell-level, but also at integrated array-levelIncludes detailed discussion of the peripheral circuits and array architecture design of . N° de réf. du vendeur 458625682
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. reprint edition. 269 pages. 9.25x6.10x0.64 inches. In Stock. N° de réf. du vendeur __3319853686
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Neuro-inspired Computing Using Resistive Synaptic Devices | Shimeng Yu | Taschenbuch | xi | Englisch | 2018 | Springer | EAN 9783319853680 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 114238868
Quantité disponible : 5 disponible(s)