Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems.
Dr. Herodotos Herodotou is a tenure-track Lecturer at the Cyprus University of Technology. He received his Ph.D. in Computer Science from Duke University in 2012. His research interests are in large-scale Data Processing and Database Systems. In particular, his work focuses on automatic manageability and tuning of data-intensive computing systems.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Herodotou HerodotosDr. Herodotos Herodotou is a tenure-track Lecturer at the Cyprus University of Technology. He received his Ph.D. in Computer Science from Duke University in 2012. His research interests are in large-scale Data Proc. N° de réf. du vendeur 158246795
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems. N° de réf. du vendeur 9783330001404
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems. 328 pp. Englisch. N° de réf. du vendeur 9783330001404
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems.Books on Demand GmbH, Überseering 33, 22297 Hamburg 328 pp. Englisch. N° de réf. du vendeur 9783330001404
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26394745952
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 401663935
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18394745962
Quantité disponible : 4 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 328 pages. 8.66x5.91x0.74 inches. In Stock. N° de réf. du vendeur 3330001402
Quantité disponible : 1 disponible(s)
Vendeur : dsmbooks, Liverpool, Royaume-Uni
paperback. Etat : New. New. book. N° de réf. du vendeur D8S0-3-M-3330001402-6
Quantité disponible : 1 disponible(s)