Multispectral analysis employed for palm related authentication uses light illumination in visible range (Red, Green, Blue) and Near Infrared (NIR) for capturing images, it combines the different information from different sources to enhances the performance of the system using a phenomenon termed as Biometric fusion. For this work, Multispectral Palmprint recognition was investigated using Principal Component Analysis (PCA) for images under different illuminations. Biometric fusion at image level was proposed where images captured under different illuminations were concatenated as triple (R,B,NIR and G,B,NIR) and a combination of four illuminations(R,G,B,NIR) accompanied by extraction of feature vectors from PCA space with incorporation of the K-Nearest Neighbour (K-NN) in the classification process. Experiments for the proposed approach were carried out on the PolyU Multispectral Database. The findings suggest that the concatenation demonstrated a good performance.The analysis should help guide one in the newly ongoing research field of Multispectral Imaging or anyone who may be considering designing a reliable and accurate Multispectral Palmprint Recognition system.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Muhammad Abubakar SadiqAbubakar Sadiq Muhammad is a Lecturer from School of Technology,Kano State, Nigeria, He hadhis M.Sc Degree and B.Eng Degree in Computer Engineering from Mevlana University, Konya, Turkey and Bayero University, . N° de réf. du vendeur 385708112
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Multispectral analysis employed for palm related authentication uses light illumination in visible range (Red, Green, Blue) and Near Infrared (NIR) for capturing images, it combines the different information from different sources to enhances the performance of the system using a phenomenon termed as Biometric fusion. For this work, Multispectral Palmprint recognition was investigated using Principal Component Analysis (PCA) for images under different illuminations. Biometric fusion at image level was proposed where images captured under different illuminations were concatenated as triple (R,B,NIR and G,B,NIR) and a combination of four illuminations(R,G,B,NIR) accompanied by extraction of feature vectors from PCA space with incorporation of the K-Nearest Neighbour (K-NN) in the classification process. Experiments for the proposed approach were carried out on the PolyU Multispectral Database. The findings suggest that the concatenation demonstrated a good performance.The analysis should help guide one in the newly ongoing research field of Multispectral Imaging or anyone who may be considering designing a reliable and accurate Multispectral Palmprint Recognition system. N° de réf. du vendeur 9783330089976
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Multispectral analysis employed for palm related authentication uses light illumination in visible range (Red, Green, Blue) and Near Infrared (NIR) for capturing images, it combines the different information from different sources to enhances the performance of the system using a phenomenon termed as Biometric fusion. For this work, Multispectral Palmprint recognition was investigated using Principal Component Analysis (PCA) for images under different illuminations. Biometric fusion at image level was proposed where images captured under different illuminations were concatenated as triple (R,B,NIR and G,B,NIR) and a combination of four illuminations(R,G,B,NIR) accompanied by extraction of feature vectors from PCA space with incorporation of the K-Nearest Neighbour (K-NN) in the classification process. Experiments for the proposed approach were carried out on the PolyU Multispectral Database. The findings suggest that the concatenation demonstrated a good performance.The analysis should help guide one in the newly ongoing research field of Multispectral Imaging or anyone who may be considering designing a reliable and accurate Multispectral Palmprint Recognition system. 60 pp. Englisch. N° de réf. du vendeur 9783330089976
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Multispectral analysis employed for palm related authentication uses light illumination in visible range (Red, Green, Blue) and Near Infrared (NIR) for capturing images, it combines the different information from different sources to enhances the performance of the system using a phenomenon termed as Biometric fusion. For this work, Multispectral Palmprint recognition was investigated using Principal Component Analysis (PCA) for images under different illuminations. Biometric fusion at image level was proposed where images captured under different illuminations were concatenated as triple (R,B,NIR and G,B,NIR) and a combination of four illuminations(R,G,B,NIR) accompanied by extraction of feature vectors from PCA space with incorporation of the K-Nearest Neighbour (K-NN) in the classification process. Experiments for the proposed approach were carried out on the PolyU Multispectral Database. The findings suggest that the concatenation demonstrated a good performance.The analysis should help guide one in the newly ongoing research field of Multispectral Imaging or anyone who may be considering designing a reliable and accurate Multispectral Palmprint Recognition system.Books on Demand GmbH, Überseering 33, 22297 Hamburg 60 pp. Englisch. N° de réf. du vendeur 9783330089976
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 60 pages. 8.66x5.91x0.14 inches. In Stock. N° de réf. du vendeur 3330089970
Quantité disponible : 1 disponible(s)