Articles liés à Development of New Hybrid Models for Prediction of...

Development of New Hybrid Models for Prediction of Maximal Oxygen Uptake (VO2max) Using Machine Learning Methods Combined with Feature Selection Algorithms - Couverture souple

 
9783346551078: Development of New Hybrid Models for Prediction of Maximal Oxygen Uptake (VO2max) Using Machine Learning Methods Combined with Feature Selection Algorithms

Synopsis

Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R's) and root mean squared errors (RMSE's). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 62,04

Autre devise

EUR 6,81 expédition vers Etats-Unis

Destinations, frais et délais

Résultats de recherche pour Development of New Hybrid Models for Prediction of...

Image d'archives

Abut, Fatih
Edité par Grin Verlag, 2022
ISBN 10 : 3346551075 ISBN 13 : 9783346551078
Neuf Couverture souple

Vendeur : Best Price, Torrance, CA, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9783346551078

Contacter le vendeur

Acheter neuf

EUR 62,04
Autre devise
Frais de port : EUR 6,81
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Fatih Abut
Edité par GRIN Verlag Jan 2022, 2022
ISBN 10 : 3346551075 ISBN 13 : 9783346551078
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R¿s) and root mean squared errors (RMSE¿s). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average. 148 pp. Englisch. N° de réf. du vendeur 9783346551078

Contacter le vendeur

Acheter neuf

EUR 47,95
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Abut, Fatih
Edité par Grin Verlag, 2022
ISBN 10 : 3346551075 ISBN 13 : 9783346551078
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9783346551078

Contacter le vendeur

Acheter neuf

EUR 82,61
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Fatih Abut
Edité par GRIN Verlag Jan 2022, 2022
ISBN 10 : 3346551075 ISBN 13 : 9783346551078
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R¿s) and root mean squared errors (RMSE¿s). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average.Books on Demand GmbH, Überseering 33, 22297 Hamburg 148 pp. Englisch. N° de réf. du vendeur 9783346551078

Contacter le vendeur

Acheter neuf

EUR 47,95
Autre devise
Frais de port : EUR 60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Fatih Abut
Edité par GRIN Verlag, 2022
ISBN 10 : 3346551075 ISBN 13 : 9783346551078
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R¿s) and root mean squared errors (RMSE¿s). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average. N° de réf. du vendeur 9783346551078

Contacter le vendeur

Acheter neuf

EUR 47,95
Autre devise
Frais de port : EUR 61,13
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Fatih Abut
Edité par GRIN Verlag, 2022
ISBN 10 : 3346551075 ISBN 13 : 9783346551078
Neuf Taschenbuch

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Development of New Hybrid Models for Prediction of Maximal Oxygen Uptake (VO2max) Using Machine Learning Methods Combined with Feature Selection Algorithms | Fatih Abut | Taschenbuch | Englisch | 2022 | GRIN Verlag | EAN 9783346551078 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. N° de réf. du vendeur 120999217

Contacter le vendeur

Acheter neuf

EUR 47,95
Autre devise
Frais de port : EUR 70
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier