Evolutionary computation is a class of problem optimization methodology with the inspiration from the natural evolution of species. In nature, the population of a species evolves by means of selection and variation. These two principles of natural evolution form the fundamental of evolutionary - gorithms (EAs). During the past several decades, EAs have been extensively studied by the computer science and arti?cial intelligence communities. As a classofstochasticoptimizationtechniques, EAscanoftenoutperformclassical optimization techniques for di?cult real world problems. Due to the ease of use and robustness, EAs have been applied to a wide variety of optimization problems. Most of these optimization problems ta- led are stationary and deterministic. However, many real-world optimization problems are subjected to dynamic and uncertain environments that are often impossible to avoid in practice. For example, the ?tness function is uncertain or noisy as a result of simulation errors, measurement errors or approximation errors. In addition, the design variables or environmental conditions may also perturb or change over time. For these dynamic and uncertain optimization problems, the objective of the EA is no longer to simply locate the global optimum solution, but to continuously track the optimum in dynamic en- ronments, or to ?nd a robust solution that operates optimally in the presence of uncertainties. This poses serious challenges to classical optimization te- niques and conventional EAs as well. However, conventional EAs with proper enhancements are still good tools of choice for optimization problems in - namic and uncertain environments.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This book compiles recent advances of evolutionary algorithms in dynamic and uncertain environments within a unified framework. The book is motivated by the fact that some degree of uncertainty is inevitable in characterizing any realistic engineering systems. Discussion includes representative methods for addressing major sources of uncertainties in evolutionary computation, including handle of noisy fitness functions, use of approximate fitness functions, search for robust solutions, and tracking moving optimums.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Ammareal, Morangis, France
Hardcover. Etat : Très bon. Ancien livre de bibliothèque. Salissures sur la tranche. Traces d'humidité sur les premières et dernières pages. Edition 2007. Tome 51. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Stains on the edge. Traces of humidity on the first and last pages. Edition 2007. Volume 51. Ammareal gives back up to 15% of this item's net price to charity organizations. N° de réf. du vendeur E-812-950
Quantité disponible : 1 disponible(s)
Vendeur : Bluesparrowhawk Books, Chestfield, KENT, Royaume-Uni
Hardcover. Etat : New. No Jacket. Springer, 2007. Heavy hardback, no dustjacket. Unread copy. New & Sealed. book. N° de réf. du vendeur HVY-17366
Quantité disponible : 1 disponible(s)
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-85476
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEOCT25-241297
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020168302
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. State of the art of evolutionary algorithms in dynamic and uncertain environmentsState of the art of evolutionary algorithms in dynamic and uncertain environmentsIncludes supplementary material: sn.pub/extrasThis book compile. N° de réf. du vendeur 4891383
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783540497721_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book compiles recent advances of evolutionary algorithms in dynamic and uncertain environments within a unified framework. The book is motivated by the fact that some degree of uncertainty is inevitable in characterizing any realistic engineering systems. Discussion includes representative methods for addressing major sources of uncertainties in evolutionary computation, including handle of noisy fitness functions, use of approximate fitness functions, search for robust solutions, and tracking moving optimums. 632 pp. Englisch. N° de réf. du vendeur 9783540497721
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. Evolutionary Computation in Dynamic and Uncertain Environments | Shengxiang Yang (u. a.) | Buch | xxiii | Englisch | 2007 | Springer | EAN 9783540497721 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 102118377
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -Evolutionary computation is a class of problem optimization methodology with the inspiration from the natural evolution of species. In nature, the population of a species evolves by means of selection and variation. These two principles of natural evolution form the fundamental of evolutionary - gorithms (EAs). During the past several decades, EAs have been extensively studied by the computer science and arti cial intelligence communities. As a classofstochasticoptimizationtechniques,EAscanoftenoutperformclassical optimization techniques for di cult real world problems. Due to the ease of use and robustness, EAs have been applied to a wide variety of optimization problems. Most of these optimization problems ta- led are stationary and deterministic. However, many real-world optimization problems are subjected to dynamic and uncertain environments that are often impossible to avoid in practice. For example, the tness function is uncertain or noisy as a result of simulation errors, measurement errors or approximation errors. In addition, the design variables or environmental conditions may also perturb or change over time. For these dynamic and uncertain optimization problems, the objective of the EA is no longer to simply locate the global optimum solution, but to continuously track the optimum in dynamic en- ronments, or to nd a robust solution that operates optimally in the presence of uncertainties. This poses serious challenges to classical optimization te- niques and conventional EAs as well. However, conventional EAs with proper enhancements are still good tools of choice for optimization problems in - namic and uncertain environments.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 632 pp. Englisch. N° de réf. du vendeur 9783540497721
Quantité disponible : 2 disponible(s)