Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc- tures. All geometric structures are not created equal; some are creations of ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo- metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec- tures I gave in Tokyo and Berkeley in 1965.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Biography of Shoshichi Kobayashi
Shoshichi Kobayashi was born January 4, 1932 in Kofu, Japan. After obtaining his mathematics degree from the University of Tokyo and his Ph.D. from the University of Washington, Seattle, he held positions at the Institute for Advanced Study, Princeton, at MIT and at the University of British Columbia between 1956 and 1962, and then moved to the University of California, Berkeley, where he is now Professor in the Graduate School.
Kobayashi's research spans the areas of differential geometry of real and complex variables, and his numerous resulting publications include several book: Foundations of Differential Geometry with N. Nomizu, Hyperbolic Complex Manifolds and Holomorphic mappings and Differential Geometry of Complex Vector Bundles.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Books From California, Simi Valley, CA, Etats-Unis
perfect. Etat : Very Good. N° de réf. du vendeur mon0003809066
Quantité disponible : 1 disponible(s)
Vendeur : Plurabelle Books Ltd, Cambridge, Royaume-Uni
Paperback. Etat : Very Good. Series: Classics in Mathematics. viii 182p slim neat paperback, lemon-yellow cover, very good condition, a fresh copy, spine a bit sunned, tight binding, clean and bright pages, free from highlighting and annotation, a splendid copy Language: English Weight (g): 980. N° de réf. du vendeur 233744
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 4850384-n
Quantité disponible : 15 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783540586593
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 4850384
Quantité disponible : 15 disponible(s)
Vendeur : Antiquariat Renner OHG, Albstadt, Allemagne
Softcover. Etat : Sehr gut. Reprint of the ed. 1972. Berlin, Springer (1995). gr.8°. VIII, 182 p. Pbck. (edge slightly browned, otherwise in very good condition).- Classics in Mathematics.- Incl. bibliography. N° de réf. du vendeur 79080
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783540586593_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783540586593
Quantité disponible : 10 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 4850384-n
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965. 196 pp. Englisch. N° de réf. du vendeur 9783540586593
Quantité disponible : 2 disponible(s)