Foreward - Introduction - Open Questions in Neurocomputing for Earth Observation - A Comparison of the Characterisation of Agricultural Land Using Singular Value Decomposition and Neural Networks - Land Cover Mapping from Remotely Sensed Data with a Neural Network: Accomodation Fuzziness - Geological Mapping Using Multi-Sensor Data: A Comparison of Methods - Application of Neural Networks and Order Statistics Filters to Speckle Noise Reduction in Remote Sensing Imaging - Neural Nets and Multichannel Image Processing Applications - Neural Networks for Classification of Ice Type Concentration from ERS-1 SAR Images. Classical Methods versus Neural Networks - A Neural Network Approach to Spectral Mixture Analysis - Comparison Between Systems of Image Interpretation - Feature Extraction for Neural Network Classifiers - Spectral Pattern Recognition by a Two-Layer Perceptron: Effects of Training Set Size - Comparison and Combination of Statistical and Neural Network Algorithms for Remote-Sensing Image Classification - Integrating the Alisa Classifier with Knowledge-Based Methods for Cadastral-Map Interpretation - A Hybrid Method for Preprocessing and Classification of SPOT Images - Testing some Connectionist Approaches for Thematic Mapping of Rural Areas - Using Artificial Recurrent Neural Nets to Identify Spectral and Spatial Patterns for Satellite Imagery Classification of Urban Areas - Dynamic Segmentation of Satellite Images Using Pulsed Coupled Neural Networks - Non-Linear Diffusion as a Neuron-Like Paradigm for Low-Level Vision - Application of the Constructive Mikado-Algorithm on Remotely Sensed Data - A Simple Neural Network Contextual Classifier - Optimising Neural Networks for Land Use Classification - High Speed Image Segmentation Using a Binary Neural Network - Efficient Processing and Analysis of Images Using Neural Networks - Selection of the Number of Clusters in Remote Sensing Images by Means of Neural Networks - A Comparative Study of Topological Feature Maps Versus Conventional Clustering for (Multi-Spectral) Scene. Identification in METEOSAT Imagery - Self Organised Maps: the Combined Utilisation of Feature and Novelty Detectors - Generalisation of Neural Network Based Segmentation. Results for Classification Purposes - Remote Sensing Applications which may be Addressed by Neural Networks Using Parallel Processing Technology - General Discussion
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 3 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 4,59 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : medimops, Berlin, Allemagne
Etat : good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. N° de réf. du vendeur M03540633162-G
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783540633167_new
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. A state-of-the-art view of recent developments in the use of artificial neural networks for analysing remotely sensed satellite data. Neural networks, as a new form of computational paradigm, appear well suited to many of the tasks involved in this image an. N° de réf. du vendeur 908117821
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783540633167
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 284 pages. 9.75x6.50x1.00 inches. In Stock. N° de réf. du vendeur x-3540633162
Quantité disponible : 2 disponible(s)