Introduction Model theorists have often joked in recent years that the part of mathemat- ical logic known as "pure model theory" (or stability theory), as opposed to the older and more traditional "model theory applied to algebra", turns out to have more and more to do with other subjects ofmathematics and to yield gen- uine applications to combinatorial geometry, differential algebra and algebraic geometry. We illustrate this by presenting the very striking application to diophantine geometry due to Ehud Hrushovski: using model theory, he has given the first proof valid in all characteristics of the "Mordell-Lang conjecture for function fields" (The Mordell-Lang conjecture for function fields, Journal AMS 9 (1996), 667-690). More recently he has also given a new (model theoretic) proof of the Manin-Mumford conjecture for semi-abelian varieties over a number field. His proofyields the first effective bound for the cardinality ofthe finite sets involved (The Manin-Mumford conjecture, preprint). There have been previous instances of applications of model theory to alge- bra or number theory, but these appl cations had in common the feature that their proofs used a lot of algebra (or number theory) but only very basic tools and results from the model theory side: compactness, first-order definability, elementary equivalence...
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 7 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. [dodr.]. XV, [1], 211 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04561 9783540648635 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2490797
Quantité disponible : 1 disponible(s)
Vendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 228 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 602806/2
Quantité disponible : 1 disponible(s)
Vendeur : Munster & Company LLC, ABAA/ILAB, Corvallis, OR, Etats-Unis
Paperback. Etat : Very Good. Berling, Heidelberg, New York: Springer Verlag, 1998. 211 pp. 23.5 x 15.5 cm. Light rubbing to covers from normal shelfwear; small bump to head of spine. Light foxing to inside of covers and edges of text block. Interior is clean and unmarked. Binding is firm. Soft Cover. Very Good. N° de réf. du vendeur 625221
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 4896955
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783540648635_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783540648635
Quantité disponible : 10 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Introduction Model theorists have often joked in recent years that the part of mathemat ical logic known as 'pure model theory' (or stability theory), as opposed to the older and more traditional 'model theory applied to algebra' , turns out to have more and more to do with other subjects ofmathematics and to yield gen uine applications to combinatorial geometry, differential algebra and algebraic geometry. We illustrate this by presenting the very striking application to diophantine geometry due to Ehud Hrushovski: using model theory, he has given the first proof valid in all characteristics of the 'Mordell-Lang conjecture for function fields' (The Mordell-Lang conjecture for function fields, Journal AMS 9 (1996), 667-690). More recently he has also given a new (model theoretic) proof of the Manin-Mumford conjecture for semi-abelian varieties over a number field. His proofyields the first effective bound for the cardinality ofthe finite sets involved (The Manin-Mumford conjecture, preprint). There have been previous instances of applications of model theory to alge bra or number theory, but these appl~cations had in common the feature that their proofs used a lot of algebra (or number theory) but only very basic tools and results from the model theory side: compactness, first-order definability, elementary equivalence. N° de réf. du vendeur 9783540648635
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Introduction Model theorists have often joked in recent years that the part of mathemat ical logic known as 'pure model theory' (or stability theory), as opposed to the older and more traditional 'model theory applied to algebra' , turns out to have more and more to do with other subjects ofmathematics and to yield gen uine applications to combinatorial geometry, differential algebra and algebraic geometry. We illustrate this by presenting the very striking application to diophantine geometry due to Ehud Hrushovski: using model theory, he has given the first proof valid in all characteristics of the 'Mordell-Lang conjecture for function fields' (The Mordell-Lang conjecture for function fields, Journal AMS 9 (1996), 667-690). More recently he has also given a new (model theoretic) proof of the Manin-Mumford conjecture for semi-abelian varieties over a number field. His proofyields the first effective bound for the cardinality ofthe finite sets involved (The Manin-Mumford conjecture, preprint). There have been previous instances of applications of model theory to alge bra or number theory, but these appl~cations had in common the feature that their proofs used a lot of algebra (or number theory) but only very basic tools and results from the model theory side: compactness, first-order definability, elementary equivalence. 228 pp. Englisch. N° de réf. du vendeur 9783540648635
Quantité disponible : 2 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783540648635
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Introduction Model theorists have often joked in recent years that the part of mathemat ical logic known as 'pure model theory' (or stability theory), as opposed to the older and more traditional 'model theory applied to algebra' , turns out to have more and more to do with other subjects ofmathematics and to yield gen uine applications to combinatorial geometry, differential algebra and algebraic geometry. We illustrate this by presenting the very striking application to diophantine geometry due to Ehud Hrushovski: using model theory, he has given the first proof valid in all characteristics of the 'Mordell-Lang conjecture for function fields' (The Mordell-Lang conjecture for function fields, Journal AMS 9 (1996), 667-690). More recently he has also given a new (model theoretic) proof of the Manin-Mumford conjecture for semi-abelian varieties over a number field. His proofyields the first effective bound for the cardinality ofthe finite sets involved (The Manin-Mumford conjecture, preprint). There have been previous instances of applications of model theory to alge bra or number theory, but these appl~cations had in common the feature that their proofs used a lot of algebra (or number theory) but only very basic tools and results from the model theory side: compactness, first-order definability, elementary equivalence. 228 pp. Englisch. N° de réf. du vendeur 9783540648635
Quantité disponible : 2 disponible(s)