Time and change characterise the natural world, but in the biological sciences, by comparison with spatial measurements, time is a somewhat neglected parameter. Structural analyses of great depth and elegance have taken our spatial understa- ing to atomic dimensions, where distances are measured in Å. To obtain temporal measurements appropriate to this spatial scale, dynamics on an attosecond time- 18 scale (10 s) are required in order to visualise physico-chemical mechanisms (Baum and Zewail 2006). For certain specific reactions of molecular components obtained from biological sources (e. g. the formation of carboxyhaemoglobin by the oxygenation of haemoglobin), probing of picosecond reactions are important (Brunori et al. 1999). In plants, femtosecond lifetimes of excited states of chlo- phyll are key to the photosynthetic light reaction. These considerations underline the extreme range of dynamic interactions that are necessitated for an understa- ing of the living organism, for if we include the long history of evolutionary change 9 (Fenchel 2002), an upper limit to our studies would extend over about 3. 8 × 10 years (Fig. 1). When the dynamic range of biological processes is to be considered, we must be aware that the system as it performs in vivo is a heterarchy with interactions of great complexity that occur, not merely within a level but between levels, and often across widely-separated time domains. The living state is better considered to be homeodynamic rather than homeostatic (Yates 1992; Lloyd et al. 2001).
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 296. N° de réf. du vendeur 26479214
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 296 32 Illus. N° de réf. du vendeur 7401521
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 296. N° de réf. du vendeur 18479204
Quantité disponible : 1 disponible(s)
Vendeur : Research Ink, Takoma Park, MD, Etats-Unis
Hardback. Etat : Very Good. Etat de la jaquette : jacketcondition. 283 pp. Rubber-stamped on front free endpaper. book. N° de réf. du vendeur 24353
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020174936
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783540684206_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Time and change characterise the natural world, but in the biological sciences, by comparison with spatial measurements, time is a somewhat neglected parameter. Structural analyses of great depth and elegance have taken our spatial understa- ing to atomic dimensions, where distances are measured in Å. To obtain temporal measurements appropriate to this spatial scale, dynamics on an attosecond time- 18 scale (10 s) are required in order to visualise physico-chemical mechanisms (Baum and Zewail 2006). For certain specific reactions of molecular components obtained from biological sources (e. g. the formation of carboxyhaemoglobin by the oxygenation of haemoglobin), probing of picosecond reactions are important (Brunori et al. 1999). In plants, femtosecond lifetimes of excited states of chlo- phyll are key to the photosynthetic light reaction. These considerations underline the extreme range of dynamic interactions that are necessitated for an understa- ing of the living organism, for if we include the long history of evolutionary change 9 (Fenchel 2002), an upper limit to our studies would extend over about 3. 8 × 10 years (Fig. 1). When the dynamic range of biological processes is to be considered, we must be aware that the system as it performs in vivo is a heterarchy with interactions of great complexity that occur, not merely within a level but between levels, and often across widely-separated time domains. The living state is better considered to be homeodynamic rather than homeostatic (Yates 1992; Lloyd et al. 2001). 283 pp. Englisch. N° de réf. du vendeur 9783540684206
Quantité disponible : 2 disponible(s)
Vendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 280 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. N° de réf. du vendeur 4485444/12
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Review of the latest results in the major areas of the plant sciences in the past 1-2 yearsReview.- From Liver to Leaves: Memories of a Plant Biochemist.- Genetics.- What s New in the Plant Cell Cycle?.- Physiology.- Solute Uptake in Plants: A Fl. N° de réf. du vendeur 4898612
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Time and change characterise the natural world, but in the biological sciences, by comparison with spatial measurements, time is a somewhat neglected parameter. Structural analyses of great depth and elegance have taken our spatial understa- ing to atomic dimensions, where distances are measured in Å. To obtain temporal measurements appropriate to this spatial scale, dynamics on an attosecond time- 18 scale (10 s) are required in order to visualise physico-chemical mechanisms (Baum and Zewail 2006). For certain specific reactions of molecular components obtained from biological sources (e. g. the formation of carboxyhaemoglobin by the oxygenation of haemoglobin), probing of picosecond reactions are important (Brunori et al. 1999). In plants, femtosecond lifetimes of excited states of chlo- phyll are key to the photosynthetic light reaction. These considerations underline the extreme range of dynamic interactions that are necessitated for an understa- ing of the living organism, for if we include the long history of evolutionary change 9 (Fenchel 2002), an upper limit to our studies would extend over about 3. 8 × 10 years (Fig. 1). When the dynamic range of biological processes is to be considered, we must be aware that the system as it performs in vivo is a heterarchy with interactions of great complexity that occur, not merely within a level but between levels, and often across widely-separated time domains. The living state is better considered to be homeodynamic rather than homeostatic (Yates 1992; Lloyd et al. 2001). N° de réf. du vendeur 9783540684206
Quantité disponible : 2 disponible(s)