The key concept is that of measure which is first developed on the real line and then presented abstractly to provide an introduction to the foundations of probability theory (the Kolmogorov axioms) which in turn opens a route to many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities. Throughout, the development of the Lebesgue Integral provides the essential ideas: the role of basic convergence theorems, a discussion of modes of convergence for measurable functions, relations to the Riemann integral and the fundamental theorem of calculus, leading to the definition of Lebesgue spaces, the Fubini and Radon-Nikodym Theorems and their roles in describing the properties of random variables and their distributions. Applications to probability include laws of large numbers and the central limit theorem.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 10,32 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Books & Bobs, Deeside, FLINT, Royaume-Uni
Soft cover. Etat : Fine. As new copy. A tight, bright, and clean copy with no inscriptions and no annotations/notes. No creases to spine/cover or foxing to pages. Fantastic condition book. 227pp. (17x23.5cm). Please contact us for any more information. N° de réf. du vendeur 6986
Quantité disponible : 1 disponible(s)
Vendeur : Bucks County Bookshop IOBA, Doylestown, PA, Etats-Unis
Published 1999 for the third-year undergraduate student. -- Softcover. Condition: very good. ISBN 3540762604. N° de réf. du vendeur 32325
Quantité disponible : 1 disponible(s)
Vendeur : Rob the Book Man, Vancouver, WA, Etats-Unis
Soft cover. Etat : Fine. trade paperback in fine condition. N° de réf. du vendeur 20093
Quantité disponible : 1 disponible(s)