There are many ways of introducing the concept of probability in classical, deterministic physics. This volume is concerned with one approach, known as "the method of arbitrary functions", which was first considered by Poincare. Essentially, the method proceeds by associating some uncertainty to our knowledge of both the initial conditions and the values of the physical constants that characterize the evolution of a physical system. By modelling this uncertainty by a probability density distribution, it is then possible to analyze how the state of the system evolves through time. This approach may be applied to a wide variety of classical problems and the author considers here examples as diverse as bouncing balls, simple and coupled harmonic oscillators, integrable systems (such as spinning tops), planetary motion, and billiards. An important aspect of this account is to study the speed of convergence for solutions in order to determine the practical relevance of the method of arbitrary functions for specific examples. Consequently, both new results on convergence, and tractable upper bounds are derived and applied.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 29,25 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 7,67 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 164. N° de réf. du vendeur 2647979265
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 164. N° de réf. du vendeur 44803294
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 164. N° de réf. du vendeur 1847979275
Quantité disponible : 1 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA75835409774065
Quantité disponible : 1 disponible(s)