Particle filtering is a new nonlinear state estimation technique that aims to directly approximate the posterior distribution of the system. This technique was introduced to the engineering community in the early years of 2000. Since then it has drawn significant attentions due to its accuracy, robustness and flexibility in various nonlinear/non-Gaussian estimation applications, such as target tracking, robot localization and mapping, communications, sensor networks, computer vision and others. Latest research has shown that particle filter based algorithms can greatly improve the estimations over conventional methods, such as extended Kalman filter (EKF). This book introduces the basic concept of particle filtering, its advantages and limitations as well as various methods to improve particle filters. The analysis provided by this book should shed some light on how to design advanced particle filter tracking algorithms.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Particle filtering is a new nonlinear state estimation technique that aims to directly approximate the posterior distribution of the system. This technique was introduced to the engineering community in the early years of 2000. Since then it has drawn significant attentions due to its accuracy, robustness and flexibility in various nonlinear/non-Gaussian estimation applications, such as target tracking, robot localization and mapping, communications, sensor networks, computer vision and others. Latest research has shown that particle filter based algorithms can greatly improve the estimations over conventional methods, such as extended Kalman filter (EKF). This book introduces the basic concept of particle filtering, its advantages and limitations as well as various methods to improve particle filters. The analysis provided by this book should shed some light on how to design advanced particle filter tracking algorithms.
Dr. Yan Zhai: Ph.D in ECE from the Univ. of Oklahoma in 2007. His research area is signal processing. He is now with Schlumberger, TX. Dr. Mark Yeary: Ph.D.E.E from Texas A&M University in 1999. Currently, he is a tenured Associate Professor in the Univ. of Oklahoma. His research interest is signal processing in weather radar applications.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLING22Oct2817100448217
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 5749366-n
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783639070101
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783639070101
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783639070101
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783639070101_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 5749366-n
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Particle filtering is a new nonlinear stateestimation technique that aims to directlyapproximate the posterior distribution of thesystem. This technique was introduced to theengineering community in the early years of 2000.Since then it has drawn significan. N° de réf. du vendeur 4954600
Quantité disponible : Plus de 20 disponibles
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Improved Nonlinear Filtering For Target Tracking | Particle Filtering: Basics, Concepts and Improvements | Yan Zhai | Taschenbuch | Kartoniert / Broschiert | Englisch | 2013 | VDM Verlag Dr. Müller | EAN 9783639070101 | Verantwortliche Person für die EU: OmniScriptum GmbH & Co. KG, Bahnhofstr. 28, 66111 Saarbrücken, info[at]akademikerverlag[dot]de | Anbieter: preigu. N° de réf. du vendeur 101752931
Quantité disponible : 5 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Particle filtering is a new nonlinear stateestimation technique that aims to directlyapproximate the posterior distribution of thesystem. This technique was introduced to theengineering community in the early years of 2000.Since then it has drawn significant attentions due toits accuracy, robustness and flexibility in variousnonlinear/non-Gaussian estimation applications, suchas target tracking, robot localization and mapping,communications, sensor networks, computer vision andothers. Latest research has shown that particlefilter based algorithms can greatly improve theestimations over conventional methods, suchas extended Kalman filter (EKF). This bookintroduces the basic concept of particle filtering,its advantages and limitations as well as variousmethods to improve particle filters. The analysisprovided by this book should shed some light on howto design advanced particle filter trackingalgorithms. N° de réf. du vendeur 9783639070101
Quantité disponible : 2 disponible(s)