This book introduces, describes and validates a novel technology for Conversational Recommender Systems (CRSs). It is targeted for researchers, teachers and students related to the fields of Machine Learning and/or E-commerce. Specifically, CRSs are intelligent E-commerce applications that assist users by supporting an interactive recommendation process. To this end, CRSs employ some type of a recommendation strategy, i.e., a specification of the system behavior. Typically, this strategy is pre-determined in advance and hard-coded inside the system, thus making it possibly non-adapted to the dynamic needs of the users. The technology presented in this book allows CRSs to autonomously learn the optimal (best) strategy for a given recommendation context, from amongst a set of available ones. The optimal strategy is best adapted to the users' needs, and is learned using Reinforcement Learning techniques (a branch of Machine Learning). We have validated this technology through simulations as well as in an online evaluation involving several hundreds of real users. Our results justify the application of this technology in state-of-the-art E-commerce portals.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This book introduces, describes and validates a novel technology for Conversational Recommender Systems (CRSs). It is targeted for researchers, teachers and students related to the fields of Machine Learning and/or E-commerce. Specifically, CRSs are intelligent E-commerce applications that assist users by supporting an interactive recommendation process. To this end, CRSs employ some type of a recommendation strategy, i.e., a specification of the system behavior. Typically, this strategy is pre-determined in advance and hard-coded inside the system, thus making it possibly non-adapted to the dynamic needs of the users. The technology presented in this book allows CRSs to autonomously learn the optimal (best) strategy for a given recommendation context, from amongst a set of available ones. The optimal strategy is best adapted to the users' needs, and is learned using Reinforcement Learning techniques (a branch of Machine Learning). We have validated this technology through simulations as well as in an online evaluation involving several hundreds of real users. Our results justify the application of this technology in state-of-the-art E-commerce portals.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 29,39 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Mahmood TariqTariq Mahmood is an Assistant Professor at the National University (NUCES), Pakistan. He holds a PhD, with a specialization in the application of Machine Learning techniques to E-commerce systems. His research interes. N° de réf. du vendeur 4955522
Quantité disponible : Plus de 20 disponibles
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79036390797956
Quantité disponible : 1 disponible(s)