This work presents and evaluates a particular algorithm used for the real time computations of time dependent ordinary and partial differential equations which employs a parallelization strategy over the temporal domain. We also discuss the coupling of this method with another popular technique used for real time computations, model reduction, which will be shown to provide more gains than either method alone. In particular, we look at reduced order modeling based on proper orthogonal decompositions. We present some applications in terms of solving time dependent nonlinear partial differential equations and solving these equations with a coupled approach of combining model reduction and the parareal algorithm . The performance of this method, both numerically and computationally, is discussed in terms of the gains in speedup and efficiency, and in terms of the scalability of the parallelization of the temporal domain on a larger and larger set of compute nodes or processors.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This work presents and evaluates a particular algorithm used for the real time computations of time dependent ordinary and partial differential equations which employs a parallelization strategy over the temporal domain. We also discuss the coupling of this method with another popular technique used for real time computations, model reduction, which will be shown to provide more gains than either method alone. In particular, we look at reduced order modeling based on proper orthogonal decompositions. We present some applications in terms of solving time dependent nonlinear partial differential equations and solving these equations with a coupled approach of combining model reduction and the parareal algorithm . The performance of this method, both numerically and computationally, is discussed in terms of the gains in speedup and efficiency, and in terms of the scalability of the parallelization of the temporal domain on a larger and larger set of compute nodes or processors.
Christopher R. Harden was born 12-21-1976, in Jacksonville, Fl. In 2005, he completed a Bachelors degree in Philosophy and a Bachelors degree in Mathematics at UNF. In 2008, he obtained a Masters degree in Computational Science at FSU. Chris is now finishing his Ph.D in Computational Science under Prof. T. Plewa at FSU.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Harden ChristopherChristopher R. Harden was born 12-21-1976, in Jacksonville, Fl.nIn 2005, he ncompleted a Bachelors degree in Philosophy and a Bachelors degreenin Mathematics nat UNF. In 2008, he obtained a Masters degree in Computa. N° de réf. du vendeur 4960242
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 92. N° de réf. du vendeur 26128747622
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 92 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. N° de réf. du vendeur 131807161
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 92. N° de réf. du vendeur 18128747628
Quantité disponible : 4 disponible(s)