Several novel and robust learning algorithms, with the aim to overcome the drawbacks of traditional clustering algorithms, are developed for data clustering and its applications. The effectiveness and superiority of the proposed methods are supported by experimental results. 1) Te proposed RDA exhibits several robust clustering characteristics: robust to the initialization; robust to cluster volumes; and robust to noise and outliers. 2) The proposed IFCSS algorithm achieves two robust clustering characteristics: the robustness against noisy points is obtained by the maximization of mutual information; and the optimal cluster number is auto-determined by the VC-bound induced cluster validity. 3) The KDA is developed to discover some complicated (e.g., linearly nonseparable) data structures which can not be revealed by traditional clustering methods in the standard Euclidean space. 4) Finally, robust clustering methods have been developed for image segmentation and pattern classification. The proposed ASDA can perform unsupervised clustering for robust image segmentation. The KPCM is developed to generate weights used for SVM training.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 28,81 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisEUR 48,99 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Yang Xu-LeiXuLei YANG obtained the PhD degree from EEE School, NTU in n2005. His current research interests include pattern nrecognition, image processing, and machine vision. He has npublished more than 20 papers in scientific book . N° de réf. du vendeur 4964725
Quantité disponible : Plus de 20 disponibles
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA78736391806906
Quantité disponible : 1 disponible(s)