Articles liés à Chromatic Polynomials and Chromaticity of Graphs and...

Chromatic Polynomials and Chromaticity of Graphs and Hypergraphs: Chromaticity of Jahnagir Graph: h-Chromaticity of Linear Uniform Hypercycles: Cyclomatic Number of Hypergraphs - Couverture souple

 
9783639256123: Chromatic Polynomials and Chromaticity of Graphs and Hypergraphs: Chromaticity of Jahnagir Graph: h-Chromaticity of Linear Uniform Hypercycles: Cyclomatic Number of Hypergraphs

Synopsis

For a century, one of the most famous problems in mathematics was to prove the Four-colour theorem. In a paper Birkhof proposed a way of tackling the four-colour problem by introducing a function P(M,?), to be the number of proper colourings of a map M. It turns out that P(M,?) is a polynomial in ?¸ called the chromatic polynomial of M. In 1968, Read asked: What is the necessary and sufficient condition for two graphs to be chromatically equivalent; i.e. to have same chromatic polynomial? A graphs is said to be unique if no other graphs share its chromatic polynomial. The question of chromatic equivalence and uniqueness is termed the chromaticity of graphs. In chapter 5 we will prove that the Jahangir graph is chromatically unique for p = 3. Dohmen and Tomescu initiated and discussed the study of chromaticity of linear uniform hypergraphs. In chapter 6, we will generalize the result proved by Tomescu related to the chromaticity of two linear uniform h-hypercycles having a path in common. Also, we will prove an important result which tells us that the number of cycles of a linear hypergraph is bounded below by its cyclomatic number.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

For a century, one of the most famous problems in mathematics was to prove the Four-colour theorem. In a paper Birkhof proposed a way of tackling the four-colour problem by introducing a function P(M,?), to be the number of proper colourings of a map M. It turns out that P(M,?) is a polynomial in ?¸ called the chromatic polynomial of M. In 1968, Read asked: What is the necessary and sufficient condition for two graphs to be chromatically equivalent; i.e. to have same chromatic polynomial? A graphs is said to be unique if no other graphs share its chromatic polynomial. The question of chromatic equivalence and uniqueness is termed the chromaticity of graphs. In chapter 5 we will prove that the Jahangir graph is chromatically unique for p = 3. Dohmen and Tomescu initiated and discussed the study of chromaticity of linear uniform hypergraphs. In chapter 6, we will generalize the result proved by Tomescu related to the chromaticity of two linear uniform h-hypercycles having a path in common. Also, we will prove an important result which tells us that the number of cycles of a linear hypergraph is bounded below by its cyclomatic number.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

Octavo, ix, 62 pages. In Very Good...
Afficher cet article
EUR 16,40

Autre devise

EUR 39,06 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 39,24

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Chromatic Polynomials and Chromaticity of Graphs and...

Image fournie par le vendeur

Akhlaq Bhatti
Edité par VDM Verlag Dr. Müller, 2010
ISBN 10 : 3639256123 ISBN 13 : 9783639256123
Neuf Kartoniert / Broschiert
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Bhatti AkhlaqMr. Akhlaq Ahmad Bhatti received his MS and M.Phil degrees in Mathematics from Govt. College University Lahore Pakistan. In Nov 2007 he was amongst first three group of students who defended successfully their PhD the. N° de réf. du vendeur 4971459

Contacter le vendeur

Acheter neuf

EUR 39,24
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Bhatti, Akhlaq
ISBN 10 : 3639256123 ISBN 13 : 9783639256123
Ancien ou d'occasion Softcover

Vendeur : Second Story Books, ABAA, Rockville, MD, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Softcover. Octavo, ix, 62 pages. In Very Good condition. Paperback binding. Off-white covers show extremely mild wear exteriorly. Black lettering to pictorial front. Text block has minimal wear to the edges. Illustrated. NOTE: Shelved in Netdesk office, Case #2 - New Ephemera Box #6. 1377343. FP New Rockville Stock. N° de réf. du vendeur 1377343

Contacter le vendeur

Acheter D'occasion

EUR 16,40
Autre devise
Frais de port : EUR 39,06
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier