For a century, one of the most famous problems in mathematics was to prove the Four-colour theorem. In a paper Birkhof proposed a way of tackling the four-colour problem by introducing a function P(M,?), to be the number of proper colourings of a map M. It turns out that P(M,?) is a polynomial in ?¸ called the chromatic polynomial of M. In 1968, Read asked: What is the necessary and sufficient condition for two graphs to be chromatically equivalent; i.e. to have same chromatic polynomial? A graphs is said to be unique if no other graphs share its chromatic polynomial. The question of chromatic equivalence and uniqueness is termed the chromaticity of graphs. In chapter 5 we will prove that the Jahangir graph is chromatically unique for p = 3. Dohmen and Tomescu initiated and discussed the study of chromaticity of linear uniform hypergraphs. In chapter 6, we will generalize the result proved by Tomescu related to the chromaticity of two linear uniform h-hypercycles having a path in common. Also, we will prove an important result which tells us that the number of cycles of a linear hypergraph is bounded below by its cyclomatic number.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
For a century, one of the most famous problems in mathematics was to prove the Four-colour theorem. In a paper Birkhof proposed a way of tackling the four-colour problem by introducing a function P(M,?), to be the number of proper colourings of a map M. It turns out that P(M,?) is a polynomial in ?¸ called the chromatic polynomial of M. In 1968, Read asked: What is the necessary and sufficient condition for two graphs to be chromatically equivalent; i.e. to have same chromatic polynomial? A graphs is said to be unique if no other graphs share its chromatic polynomial. The question of chromatic equivalence and uniqueness is termed the chromaticity of graphs. In chapter 5 we will prove that the Jahangir graph is chromatically unique for p = 3. Dohmen and Tomescu initiated and discussed the study of chromaticity of linear uniform hypergraphs. In chapter 6, we will generalize the result proved by Tomescu related to the chromaticity of two linear uniform h-hypercycles having a path in common. Also, we will prove an important result which tells us that the number of cycles of a linear hypergraph is bounded below by its cyclomatic number.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 5,11 expédition vers Etats-Unis
Destinations, frais et délaisEUR 3,40 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Second Story Books, ABAA, Rockville, MD, Etats-Unis
Softcover. Octavo, ix, 62 pages. In Very Good condition. Paperback binding. Off-white covers show extremely mild wear exteriorly. Black lettering to pictorial front. Text block has minimal wear to the edges. Illustrated. NOTE: Shelved in Netdesk office, Case #2 - New Ephemera Box #6. 1377343. FP New Rockville Stock. N° de réf. du vendeur 1377343
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 76. N° de réf. du vendeur 26128752327
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 76 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. N° de réf. du vendeur 131802392
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 76. N° de réf. du vendeur 18128752333
Quantité disponible : 4 disponible(s)
Vendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Bhatti AkhlaqMr. Akhlaq Ahmad Bhatti received his MS and M.Phil degrees in Mathematics from Govt. College University Lahore Pakistan. In Nov 2007 he was amongst first three group of students who defended successfully their PhD the. N° de réf. du vendeur 4971459
Quantité disponible : Plus de 20 disponibles