Developing a reliable software system, several issues need to be addressed. These issues include the definition of reliable software, reliable development methodologies, testing methods for reliability, and reliability growth prediction modeling. Many software reliability growth models were proposed with the goal to estimate the number of residual software faults, which occur in the software testing process. In this thesis, we explore an alternative approach using two types of neural networks (NN) models, the feedforward and the Radial basis function. We also use of fuzzy rules. NNs have been used both to estimate parameters of a formal model and to learn to emulate the process model itself to predict future faults. Feedforward and Radial basis function have been successfully used to solve a variety of prediction problems, which include real-time control, military, and operating system applications. A set of fuzzy rules were also developed to model the dynamics of the software reliability growth models in various applications. The reported results using neural networks and fuzzy logic can improve the software reliability growth modeling solution.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Developing a reliable software system, several issues need to be addressed. These issues include the definition of reliable software, reliable development methodologies, testing methods for reliability, and reliability growth prediction modeling. Many software reliability growth models were proposed with the goal to estimate the number of residual software faults, which occur in the software testing process. In this thesis, we explore an alternative approach using two types of neural networks (NN) models, the feedforward and the Radial basis function. We also use of fuzzy rules. NNs have been used both to estimate parameters of a formal model and to learn to emulate the process model itself to predict future faults. Feedforward and Radial basis function have been successfully used to solve a variety of prediction problems, which include real-time control, military, and operating system applications. A set of fuzzy rules were also developed to model the dynamics of the software reliability growth models in various applications. The reported results using neural networks and fuzzy logic can improve the software reliability growth modeling solution.
Received Ph.D in Information Technology from George Mason University, USA in 2003. Currently Dr. Aljahdali is Associate Professor and Dean of the college of computers and information technology at Taif University. His research interests include software reliability models, soft computing for software engineering, and reverse engineering.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Aljahdali SultanReceived Ph.D in Information Technology from George Mason University, USA in 2003. Currently Dr. Aljahdali is Associate Professor and Dean of the college of computers and information technology at Taif University. N° de réf. du vendeur 4981100
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783639363593_new
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783639363593
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783639363593
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9783639363593
Quantité disponible : 10 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783639363593
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Developing a reliable software system, several issues need to be addressed. These issues include the definition of reliable software, reliable development methodologies, testing methods for reliability, and reliability growth prediction modeling. Many software reliability growth models were proposed with the goal to estimate the number of residual software faults, which occur in the software testing process. In this thesis, we explore an alternative approach using two types of neural networks (NN) models, the feedforward and the Radial basis function. We also use of fuzzy rules. NNs have been used both to estimate parameters of a formal model and to learn to emulate the process model itself to predict future faults. Feedforward and Radial basis function have been successfully used to solve a variety of prediction problems, which include real-time control, military, and operating system applications. A set of fuzzy rules were also developed to model the dynamics of the software reliability growth models in various applications. The reported results using neural networks and fuzzy logic can improve the software reliability growth modeling solution. N° de réf. du vendeur 9783639363593
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLING22Oct2817100457432
Quantité disponible : Plus de 20 disponibles