Revision with unchanged content. The theory of random graphs was founded by Paul Erdȍs and Alfréd Rényi around 1959. Since then this interesting and fruitful branch of combinatorics attracted many experts from mathematics and theoretical computer science. This book discusses several questions from the realm of classical graph theory in the context of random graphs. In particular, we address so-called Ramsey and Turán type properties of graphs, which are central to the relatively young field of extremal graph theory. Amongst other results, this book establishes an embedding lemma for sparse graphs, which often constitutes the companion to the sparse version of Szemerédi’s regularity lemma. A stronger form of this embedding lemma was conjectured by Kohayakawa, Łuczak, and Rödl in 1994. This book also continues with the work of Kohayakawa and Kreuter from 1997. We prove strong lower bounds on the edge probability of random graphs that typically allow for an edge coloring without certain monochromatic substructures. Supposing the embedding conjecture of Kohayakawa, Łuczak, and Rödl holds, these bounds are tight and give rise to threshold functions.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 4985699
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Revision with unchanged content. The theory of random graphs was founded by Paul Erd s and Alfréd Rényi around 1959. Since then this interesting and fruitful branch of combinatorics attracted many experts from mathematics and theoretical computer science. This book discusses several questions from the realm of classical graph theory in the context of random graphs. In particular, we address so-called Ramsey and Turán type properties of graphs, which are central to the relatively young field of extremal graph theory. Amongst other results, this book establishes an embedding lemma for sparse graphs, which often constitutes the companion to the sparse version of Szemerédi s regularity lemma. A stronger form of this embedding lemma was conjectured by Kohayakawa, uczak, and Rödl in 1994. This book also continues with the work of Kohayakawa and Kreuter from 1997. We prove strong lower bounds on the edge probability of random graphs that typically allow for an edge coloring without certain monochromatic substructures. Supposing the embedding conjecture of Kohayakawa, uczak, and Rödl holds, these bounds are tight and give rise to threshold functions. N° de réf. du vendeur 9783639414837
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Revision with unchanged content. The theory of random graphs was founded by Paul Erd s and Alfréd Rényi around 1959. Since then this interesting and fruitful branch of combinatorics attracted many experts from mathematics and theoretical computer science. This book discusses several questions from the realm of classical graph theory in the context of random graphs. In particular, we address so-called Ramsey and Turán type properties of graphs, which are central to the relatively young field of extremal graph theory. Amongst other results, this book establishes an embedding lemma for sparse graphs, which often constitutes the companion to the sparse version of Szemerédi s regularity lemma. A stronger form of this embedding lemma was conjectured by Kohayakawa, uczak, and Rödl in 1994. This book also continues with the work of Kohayakawa and Kreuter from 1997. We prove strong lower bounds on the edge probability of random graphs that typically allow for an edge coloring without certain monochromatic substructures. Supposing the embedding conjecture of Kohayakawa, uczak, and Rödl holds, these bounds are tight and give rise to threshold functions. 140 pp. Englisch. N° de réf. du vendeur 9783639414837
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Revision with unchanged content. The theory of random graphs was founded by Paul Erd¿s and Alfréd Rényi around 1959. Since then this interesting and fruitful branch of combinatorics attracted many experts from mathematics and theoretical computer science. This book discusses several questions from the realm of classical graph theory in the context of random graphs. In particular, we address so-called Ramsey and Turán type properties of graphs, which are central to the relatively young field of extremal graph theory. Amongst other results, this book establishes an embedding lemma for sparse graphs, which often constitutes the companion to the sparse version of Szemerédi¿s regularity lemma. A stronger form of this embedding lemma was conjectured by Kohayakawa, ¿uczak, and Rödl in 1994. This book also continues with the work of Kohayakawa and Kreuter from 1997. We prove strong lower bounds on the edge probability of random graphs that typically allow for an edge coloring without certain monochromatic substructures. Supposing the embedding conjecture of Kohayakawa, ¿uczak, and Rödl holds, these bounds are tight and give rise to threshold functions.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 140 pp. Englisch. N° de réf. du vendeur 9783639414837
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26388998047
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 391650368
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18388998037
Quantité disponible : 4 disponible(s)