Articles liés à Foundations of Global Genetic Optimization

Foundations of Global Genetic Optimization - Couverture souple

 
9783642092251: Foundations of Global Genetic Optimization

Synopsis

Genetic algorithms today constitute a family of e?ective global optimization methods used to solve di?cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon?rmedinpart- ular by the many species of animals and plants that are well ?tted to di?erent ecological niches. They direct the search process, making it more e?ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti?cial intelligence methods which introduce heuristics, well tested in other ?elds, to the classical scheme of stochastic global search.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 120,58

Autre devise

EUR 2,25 expédition vers Etats-Unis

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 96,01

Autre devise

EUR 7,65 expédition vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9783540731917: Foundations of Global Genetic Optimization

Edition présentée

ISBN 10 :  3540731911 ISBN 13 :  9783540731917
Editeur : Springer-Verlag Berlin and Heide..., 2007
Couverture rigide

Résultats de recherche pour Foundations of Global Genetic Optimization

Image d'archives

Schaefer, Robert
Edité par Springer, 2010
ISBN 10 : 364209225X ISBN 13 : 9783642092251
Neuf Couverture souple

Vendeur : Best Price, Torrance, CA, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9783642092251

Contacter le vendeur

Acheter neuf

EUR 96,01
Autre devise
Frais de port : EUR 7,65
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Kacprzyk, Janusz
Edité par Springer, 2010
ISBN 10 : 364209225X ISBN 13 : 9783642092251
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 12702370-n

Contacter le vendeur

Acheter neuf

EUR 101,56
Autre devise
Frais de port : EUR 2,25
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

Schaefer, Robert
Edité par Springer, 2010
ISBN 10 : 364209225X ISBN 13 : 9783642092251
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar3113020217670

Contacter le vendeur

Acheter neuf

EUR 101,82
Autre devise
Frais de port : EUR 3,40
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Robert Schaefer
ISBN 10 : 364209225X ISBN 13 : 9783642092251
Neuf Paperback Edition originale

Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. This book is devoted to the application of genetic algorithms in continuous global optimization. Some of their properties and behavior are highlighted and formally justified. Various optimization techniques and their taxonomy are the background for detailed discussion. The nature of continuous genetic search is explained by studying the dynamics of probabilistic measure, which is utilized to create subsequent populations. This approach shows that genetic algorithms can be used to extract some areas of the search domain more effectively than to find isolated local minima. The biological metaphor of such behavior is the whole population surviving by rapid exploration of new regions of feeding rather than caring for a single individual. One group of strategies that can make use of this property are two-phase global optimization methods. In the first phase the central parts of the basins of attraction are distinguished by genetic population analysis. Afterwards, the minimizers are found by convex optimization methods executed in parallel. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783642092251

Contacter le vendeur

Acheter neuf

EUR 105,29
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Kacprzyk, Janusz
Edité par Springer, 2010
ISBN 10 : 364209225X ISBN 13 : 9783642092251
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 12702370

Contacter le vendeur

Acheter D'occasion

EUR 120,58
Autre devise
Frais de port : EUR 2,25
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Robert Schaefer
ISBN 10 : 364209225X ISBN 13 : 9783642092251
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Genetic algorithms today constitute a family of e ective global optimization methods used to solve di cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon rmedinpart- ular by the many species of animals and plants that are well tted to di erent ecological niches. They direct the search process, making it more e ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti cial intelligence methods which introduce heuristics, well tested in other elds, to the classical scheme of stochastic global search. 236 pp. Englisch. N° de réf. du vendeur 9783642092251

Contacter le vendeur

Acheter neuf

EUR 106,99
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Schaefer, Robert
ISBN 10 : 364209225X ISBN 13 : 9783642092251
Neuf Couverture souple Edition originale

Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Series: Studies in Computational Intelligence. Num Pages: 222 pages, biography. BIC Classification: UGC; UYQ. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 12. Weight in Grams: 367. . 2010. 1st ed. Softcover of orig. ed. 2007. Paperback. . . . . N° de réf. du vendeur V9783642092251

Contacter le vendeur

Acheter neuf

EUR 128,74
Autre devise
Frais de port : EUR 10,50
De Irlande vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Robert Schaefer
Edité par Springer Berlin Heidelberg, 2010
ISBN 10 : 364209225X ISBN 13 : 9783642092251
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents the foundations of global genetic optimizationGenetic algorithms today constitute a family of e?ective global optimization methods used to solve di?cult real-life problems which arise in science and technology. Despite their computationa. N° de réf. du vendeur 5048244

Contacter le vendeur

Acheter neuf

EUR 92,27
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Schaefer, Robert
Edité par Springer, 2010
ISBN 10 : 364209225X ISBN 13 : 9783642092251
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783642092251_new

Contacter le vendeur

Acheter neuf

EUR 134,95
Autre devise
Frais de port : EUR 13,75
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Robert Schaefer
ISBN 10 : 364209225X ISBN 13 : 9783642092251
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Genetic algorithms today constitute a family of e ective global optimization methods used to solve di cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon rmedinpart- ular by the many species of animals and plants that are well tted to di erent ecological niches. They direct the search process, making it more e ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti cial intelligence methods which introduce heuristics, well tested in other elds, to the classical scheme of stochastic global search.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 236 pp. Englisch. N° de réf. du vendeur 9783642092251

Contacter le vendeur

Acheter neuf

EUR 106,99
Autre devise
Frais de port : EUR 60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 4 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre