Articles liés à Direct Methods in the Theory of Elliptic Equations

Direct Methods in the Theory of Elliptic Equations - Couverture rigide

 
9783642104541: Direct Methods in the Theory of Elliptic Equations

Synopsis

1.Introduction to the problem.- 2.Sobolev spaces.- 3.Exitence, Uniqueness of basic problems.- 4.Regularity of solution.- 5.Applications of Rellich's inequalities and generalization to boundary value problems.- 6.Sobolev spaces with weights and applications to the boundary value problems.- 7.Regularity of solutions in case of irregular domains and elliptic problems with variable coefficients.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Jindrich Necas, Professor Emeritus of the Charles University in Prague, Distinguished Researcher Professor at the University of Northern Illinois, DeKalb, Doctor Honoris Causa at the Technical University of Dresden, a leading Czech mathematician and a world-class researcher in the field of partial differential equations. Author or coauthor of 12 monographs, 7 textbooks, and 185 research papers. High points of his research include

  1. his contribution to boundary regularity theory for linear systems
  2. his contributions to regularity theory of variational integrals, such as his 1977 solution of a long-standing question directly to Hilbert's 19th problem
  3. his contributions to mathematical theory of the Navier-stokes equations, including his 1995 solution of an important problem raised in a classical 1934 paper by J. Leray.

In 1998 he was awarded the Order of Merit of the Czech Republic by President Václav Havel.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 143,65

Autre devise

EUR 2,27 expédition vers Etats-Unis

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 120,07

Autre devise

EUR 2,27 expédition vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9783642270734: Direct Methods in the Theory of Elliptic Equations

Edition présentée

ISBN 10 :  3642270735 ISBN 13 :  9783642270734
Editeur : Springer, 2013
Couverture souple

Résultats de recherche pour Direct Methods in the Theory of Elliptic Equations

Image fournie par le vendeur

Necas, Jindrich; Necasova, Sarka (EDT); Simader, Christian G. (CON)
Edité par Springer, 2011
ISBN 10 : 3642104541 ISBN 13 : 9783642104541
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 9566553-n

Contacter le vendeur

Acheter neuf

EUR 120,07
Autre devise
Frais de port : EUR 2,27
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

Jindrich Necas
ISBN 10 : 3642104541 ISBN 13 : 9783642104541
Neuf Couverture rigide Edition originale

Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. Necas book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Necas work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library.The volume gives a self-contained presentation of the elliptic theory based on the "direct method", also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lames system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lamesystem and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications. Necas book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783642104541

Contacter le vendeur

Acheter neuf

EUR 122,40
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Necas, Jindrich
Edité par Springer, 2011
ISBN 10 : 3642104541 ISBN 13 : 9783642104541
Neuf Couverture rigide

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar3113020218433

Contacter le vendeur

Acheter neuf

EUR 121,86
Autre devise
Frais de port : EUR 3,43
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Necas, Jindrich; Necasova, Sarka (EDT); Simader, Christian G. (CON)
Edité par Springer, 2011
ISBN 10 : 3642104541 ISBN 13 : 9783642104541
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 9566553

Contacter le vendeur

Acheter D'occasion

EUR 143,65
Autre devise
Frais de port : EUR 2,27
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

Necas, Jindrich
Edité par Springer, 2011
ISBN 10 : 3642104541 ISBN 13 : 9783642104541
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In English. N° de réf. du vendeur ria9783642104541_new

Contacter le vendeur

Acheter neuf

EUR 135,45
Autre devise
Frais de port : EUR 13,80
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Jindrich Necas
ISBN 10 : 3642104541 ISBN 13 : 9783642104541
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Necas' book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Necas' work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library.The volume gives a self-contained presentation of the elliptic theory based on the 'direct method', also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame's system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which 'when going beyond the scalar equations of second order' turns out to be a very natural class. These choices reflect the author's opinion that the Lame system and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications. 388 pp. Englisch. N° de réf. du vendeur 9783642104541

Contacter le vendeur

Acheter neuf

EUR 128,39
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jindrich Necas
Edité par Springer Berlin Heidelberg, 2011
ISBN 10 : 3642104541 ISBN 13 : 9783642104541
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A standard reference for the mathematical theory of linear elliptic equations and systemsOriginally published 1967 in FrenchAny researcher using the theory of elliptic systems will benefit from this bookA standard reference for t. N° de réf. du vendeur 5049245

Contacter le vendeur

Acheter neuf

EUR 109,83
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Necas, J.
ISBN 10 : 3642104541 ISBN 13 : 9783642104541
Neuf Couverture rigide Edition originale

Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. This text covers the mathematical theory of linear elliptic equations and systems and the related function spaces framework. It provides an introduction to the modern theory of partial differential equations, the theory of weak solutions and related topics. Translator(s): Tronel, Gerard; Kufner, Alois. Series: Springer Monographs in Mathematics. Num Pages: 388 pages, biography. BIC Classification: PBKF; PBKJ. Category: (P) Professional & Vocational. Dimension: 241 x 163 x 26. Weight in Grams: 712. . 2010. 1st ed. Corr. 3rd printing 2012. Hardback. . . . . N° de réf. du vendeur V9783642104541

Contacter le vendeur

Acheter neuf

EUR 153,33
Autre devise
Frais de port : EUR 10,50
De Irlande vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

Jindrich Necas
Edité par Springer, 2011
ISBN 10 : 3642104541 ISBN 13 : 9783642104541
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 390. N° de réf. du vendeur 261375751

Contacter le vendeur

Acheter neuf

EUR 173,76
Autre devise
Frais de port : EUR 3,43
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jindrich Necas
ISBN 10 : 3642104541 ISBN 13 : 9783642104541
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -Ne¿as¿ book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Ne¿as¿ work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library.The volume gives a self-contained presentation of the elliptic theory based on the 'direct method', also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame¿s system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which 'when going beyond the scalar equations of second order' turns out to be a very natural class. These choices reflect the author's opinion that the Lamesystem and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 388 pp. Englisch. N° de réf. du vendeur 9783642104541

Contacter le vendeur

Acheter neuf

EUR 128,39
Autre devise
Frais de port : EUR 60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

There are 7 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre