Our everyday life is in?uenced by many unexpected (dif?cult to predict) events usually referred as a chance. Probably, we all are as we are due to the accumulation point of a multitude of chance events. Gambling games that have been known to human beings nearly from the beginning of our civilization are based on chance events. These chance events have created the dream that everybody can easily become rich. This pursuit made gambling so popular. This book is devoted to the dynamics of the mechanical randomizers and we try to solve the problem why mechanical device (roulette) or a rigid body (a coin or a die) operating in the way described by the laws of classical mechanics can behave in such a way and produce a pseudorandom outcome. During mathematical lessons in primary school we are taught that the outcome of the coin tossing experiment is random and that the probability that the tossed coin lands heads (tails) up is equal to 1/2. Approximately, at the same time during physics lessons we are told that the motion of the rigid body (coin is an example of suchabody)isfullydeterministic. Typically,studentsarenotgiventheanswertothe question Why this duality in the interpretation of the simple mechanical experiment is possible? Trying to answer this question we describe the dynamics of the gambling games based on the coin toss, the throw of the die, and the roulette run.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Not only does this monograph provide a general analysis of random effects in mechanical (engineering) systems, but it addresses deep questions concerning the nature of randomness, and gives potentially useful tips for gamblers and the gaming industry.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur a496afdb3bb6119ae0e8c4bfbc1d6038
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020222164
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Dynamics of Gambling: Origins of Randomness in Mechanical Systems. Book. N° de réf. du vendeur BBS-9783642261947
Quantité disponible : 5 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783642261947
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Our everyday life is in uenced by many unexpected (dif cult to predict) events usually referred as a chance. Probably, we all are as we are due to the accumulation point of a multitude of chance events. Gambling games that have been known to human beings nearly from the beginning of our civilization are based on chance events. These chance events have created the dream that everybody can easily become rich. This pursuit made gambling so popular. This book is devoted to the dynamics of the mechanical randomizers and we try to solve the problem why mechanical device (roulette) or a rigid body (a coin or a die) operating in the way described by the laws of classical mechanics can behave in such a way and produce a pseudorandom outcome. During mathematical lessons in primary school we are taught that the outcome of the coin tossing experiment is random and that the probability that the tossed coin lands heads (tails) up is equal to 1/2. Approximately, at the same time during physics lessons we are told that the motion of the rigid body (coin is an example of suchabody)isfullydeterministic. Typically,studentsarenotgiventheanswertothe question Why this duality in the interpretation of the simple mechanical experiment is possible Trying to answer this question we describe the dynamics of the gambling games based on the coin toss, the throw of the die, and the roulette run. 164 pp. Englisch. N° de réf. du vendeur 9783642261947
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 2009 edition. 162 pages. 9.20x6.10x0.37 inches. In Stock. N° de réf. du vendeur x-3642261949
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Detailed and revealing information for gamblers and the gaming industryAddresses deep questions concerning the nature of randomnessUseful for the general analysis of random effects in mechanical (engineering) systemsOur everyday lif. N° de réf. du vendeur 5054266
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783642261947_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9783642261947
Quantité disponible : 10 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Our everyday life is in uenced by many unexpected (dif cult to predict) events usually referred as a chance. Probably, we all are as we are due to the accumulation point of a multitude of chance events. Gambling games that have been known to human beings nearly from the beginning of our civilization are based on chance events. These chance events have created the dream that everybody can easily become rich. This pursuit made gambling so popular. This book is devoted to the dynamics of the mechanical randomizers and we try to solve the problem why mechanical device (roulette) or a rigid body (a coin or a die) operating in the way described by the laws of classical mechanics can behave in such a way and produce a pseudorandom outcome. During mathematical lessons in primary school we are taught that the outcome of the coin tossing experiment is random and that the probability that the tossed coin lands heads (tails) up is equal to 1/2. Approximately, at the same time during physics lessons we are told that the motion of the rigid body (coin is an example of suchabody)isfullydeterministic. Typically,studentsarenotgiventheanswertothe question Why this duality in the interpretation of the simple mechanical experiment is possible Trying to answer this question we describe the dynamics of the gambling games based on the coin toss, the throw of the die, and the roulette run.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 164 pp. Englisch. N° de réf. du vendeur 9783642261947
Quantité disponible : 2 disponible(s)