Articles liés à Understanding High-Dimensional Spaces

Understanding High-Dimensional Spaces - Couverture souple

 
9783642333972: Understanding High-Dimensional Spaces

Synopsis

High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect.

There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets arelarge and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions.

The book will be of value to practitioners, graduate students and researchers.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Prof. David B. Skillicorn is a professor in the School of Computing at Queen's University in Kingston, Ontario; he is also an adjunct professor in the Mathematics and Computer Science Department of the Royal Military College of Canada. His research interests include data mining, knowledge discovery, machine learning, parallel and distributed computing, intelligence and security informatics, and collaborative research.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 108,42

Autre devise

EUR 17,35 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 47,23

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Understanding High-Dimensional Spaces

Image fournie par le vendeur

David B. Skillicorn
Edité par Springer Berlin Heidelberg, 2012
ISBN 10 : 3642333974 ISBN 13 : 9783642333972
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. High-dimensional spaces arise naturally as a way of modelling datasets with many attributes Author suggests new ways of thinking about high-dimensional spaces using two models Valuable for practitioners, graduate students and researchers. N° de réf. du vendeur 5057255

Contacter le vendeur

Acheter neuf

EUR 47,23
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Skillicorn, David B.
Edité par Springer, 2012
ISBN 10 : 3642333974 ISBN 13 : 9783642333972
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783642333972_new

Contacter le vendeur

Acheter neuf

EUR 59,01
Autre devise
Frais de port : EUR 4,62
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

David B. Skillicorn
Edité par Springer Berlin Heidelberg, 2012
ISBN 10 : 3642333974 ISBN 13 : 9783642333972
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect. There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets arelarge and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions. The book will be of value to practitioners, graduate students and researchers. N° de réf. du vendeur 9783642333972

Contacter le vendeur

Acheter neuf

EUR 53,49
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

David B. Skillicorn
ISBN 10 : 3642333974 ISBN 13 : 9783642333972
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect. There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets are large and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions. The book will be of value to practitioners, graduate students and researchers. 120 pp. Englisch. N° de réf. du vendeur 9783642333972

Contacter le vendeur

Acheter neuf

EUR 53,49
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

David B. B. Skillicorn
Edité par Springer 2012-09-27, 2012
ISBN 10 : 3642333974 ISBN 13 : 9783642333972
Neuf Paperback

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9783642333972

Contacter le vendeur

Acheter neuf

EUR 57,12
Autre devise
Frais de port : EUR 10,98
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image fournie par le vendeur

David B. Skillicorn
ISBN 10 : 3642333974 ISBN 13 : 9783642333972
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect.There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets arelarge and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions.The book will be of value to practitioners, graduate students and researchers.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 120 pp. Englisch. N° de réf. du vendeur 9783642333972

Contacter le vendeur

Acheter neuf

EUR 53,49
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Skillicorn, David B.
Edité par Springer, 2012
ISBN 10 : 3642333974 ISBN 13 : 9783642333972
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 19133080-n

Contacter le vendeur

Acheter neuf

EUR 53,30
Autre devise
Frais de port : EUR 17,10
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Skillicorn, David B.
Edité par Springer, 2012
ISBN 10 : 3642333974 ISBN 13 : 9783642333972
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 19133080-n

Contacter le vendeur

Acheter neuf

EUR 59
Autre devise
Frais de port : EUR 17,35
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

David B. Skillicorn
Edité par Springer, 2012
ISBN 10 : 3642333974 ISBN 13 : 9783642333972
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 120. N° de réf. du vendeur 2651416542

Contacter le vendeur

Acheter neuf

EUR 75,87
Autre devise
Frais de port : EUR 7,70
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Skillicorn, David B.
Edité par Springer, 2012
ISBN 10 : 3642333974 ISBN 13 : 9783642333972
Neuf Couverture souple
impression à la demande

Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur b259d4e20a50ab033dc625939fdb0956

Contacter le vendeur

Acheter neuf

EUR 46,22
Autre devise
Frais de port : EUR 40
De Italie vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 7 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre