EUR 29,48 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisGratuit expédition vers Etats-Unis
Destinations, frais et délaisVendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Principles of Advanced Mathematical Physics: Volume II 1.04. Book. N° de réf. du vendeur BBS-9783642510786
Quantité disponible : 5 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020230125
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783642510786
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783642510786_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Inhaltsangabe18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of 4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler's theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ) onto the proper Lorentz group p. 19.9 Simplicity of the rotation and Lorentz groups. 20 Group Representations I: Rotations and Spherical Harmonics. 20.1 Finitedimensional representations of a group. 20.2 Vector and tensor transformation laws. 20.3 Other group representations in physics. 20.4 Infinitedimensional representations. 20.5 A simple case: SO(2). 20.6 Representations of matrix groups on X . 20.7 Homogeneous spaces. 20.8 Regular representations. 20.9 Representations of the rotation group SO(3). 20.10 Tesseral harmonics; Legendre functions. 20.11 Associated Legendre functions. 20.12 Matrices of the irreducible representations of SO(3); the Euler angles. 20.13 The addition theorem for tesseral harmonics. 20.14 Completeness of the tesseral harmonics. 21 Group Representations II: General; Rigid Motions; Bessel Functions. 21.1 Equivalence; unitary representations. 21.2 The reduction of representations. 21.3 Schur's Lemma and its corollaries. 21.4 Compact and noncompact groups. 21.5 Invariant integration; Haar measure. 21.6 Complete system of representations of a compact group. 21.7 Homogeneous spaces as configuration spaces in physics. 21.8 M2 and related groups. 21.9 Representations of M2. 21.10 Some irreducible representations. 21.11 Bessel functions. 21.12 Matrices of the representations. 21.13 Characters. 22 Group Representations and Quantum Mechanics. 22.1 Representations in quantum mechanics. 22.2 Rotations of the axes. 22.3 Ray representations. 22.4 A finitedimensional case. 22.5 Local representations. 22.6 Origin of the twovalued representations. 22.7 Representations of SU(2) and SL(2, ). 22.8 Irreducible representations of SU(2). 22.9 The characters of SU(2). 22.10 Functions of z and z . 22.11 The finitedimensional representations of SL(2, ). 22.12 The irreducible invariant subspaces of X for SL(2, ). 22.13 Spinors. 23 Elementary Theory of Manifolds. 23.1 Examples of manifolds; method of identification. 23.2 Coordinate systems or charts; compatibility; smoothness. 23.3 Induced topology. 23.4 Definition of manifold; Hausdorff separation axiom. 23.5 Curves and functions in a manifold. 23.6 Connectedness; components of a manifold. 23.7 Global topology; homotopic curves; fundamental group. 23.8 Mechanical linkages: Cartesian products. 24 Covering Manifolds. 24.1 Definition and examples. 24.2 Principles of lifting. 24.3 Universal covering manifold. 24.4 Comments on the construction of mathematical models. 24.5 Construction of the universal covering. 24.6 Manifolds covered by a given manifold. 25 Lie Groups. 25.1 Definitions and statement of objectives. 25.2 The expansions of m( , ) and l( , ). 25.3 The Lie algebra of a Lie group. 25.4 Abstract Lie algebras. 25.5 The Lie algebras of linear groups. 25.6 The exponential mapping; logarithmic coordinates. 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad . 25.8 Auxiliary lemmas on formal derivatives. 25.9 An auxiliary lemma on the differentiation of exponentials. 25.10 The Campbe 336. N° de réf. du vendeur 9783642510786
Quantité disponible : 2 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9783642510786
Quantité disponible : 10 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Inhaltsangabe18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of 4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler's theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ) onto the proper Lorentz group p. 19.9 Simplicity of the rotation and Lorentz groups. 20 Group Representations I: Rotations and Spherical Harmonics. 20.1 Finitedimensional representations of a group. 20.2 Vector and tensor transformation laws. 20.3 Other group representations in physics. 20.4 Infinitedimensional representations. 20.5 A simple case: SO(2). 20.6 Representations of matrix groups on X . 20.7 Homogeneous spaces. 20.8 Regular representations. 20.9 Representations of the rotation group SO(3). 20.10 Tesseral harmonics; Legendre functions. 20.11 Associated Legendre functions. 20.12 Matrices of the irreducible representations of SO(3); the Euler angles. 20.13 The addition theorem for tesseral harmonics. 20.14 Completeness of the tesseral harmonics. 21 Group Representations II: General; Rigid Motions; Bessel Functions. 21.1 Equivalence; unitary representations. 21.2 The reduction of representations. 21.3 Schur's Lemma and its corollaries. 21.4 Compact and noncompact groups. 21.5 Invariant integration; Haar measure. 21.6 Complete system of representations of a compact group. 21.7 Homogeneous spaces as configuration spaces in physics. 21.8 M2 and related groups. 21.9 Representations of M2. 21.10 Some irreducible representations. 21.11 Bessel functions. 21.12 Matrices of the representations. 21.13 Characters. 22 Group Representations and Quantum Mechanics. 22.1 Representations in quantum mechanics. 22.2 Rotations of the axes. 22.3 Ray representations. 22.4 A finitedimensional case. 22.5 Local representations. 22.6 Origin of the twovalued representations. 22.7 Representations of SU(2) and SL(2, ). 22.8 Irreducible representations of SU(2). 22.9 The characters of SU(2). 22.10 Functions of z and z . 22.11 The finitedimensional representations of SL(2, ). 22.12 The irreducible invariant subspaces of X for SL(2, ). 22.13 Spinors. 23 Elementary Theory of Manifolds. 23.1 Examples of manifolds; method of identification. 23.2 Coordinate systems or charts; compatibility; smoothness. 23.3 Induced topology. 23.4 Definition of manifold; Hausdorff separation axiom. 23.5 Curves and functions in a manifold. 23.6 Connectedness; components of a manifold. 23.7 Global topology; homotopic curves; fundamental group. 23.8 Mechanical linkages: Cartesian products. 24 Covering Manifolds. 24.1 Definition and examples. 24.2 Principles of lifting. 24.3 Universal covering manifold. 24.4 Comments on the construction of mathematical models. 24.5 Construction of the universal covering. 24.6 Manifolds covered by a given manifold. 25 Lie Groups. 25.1 Definitions and statement of objectives. 25.2 The expansions of m( , ) and l( , ). 25.3 The Lie algebra of a Lie group. 25.4 Abstract Lie algebras. 25.5 The Lie algebras of linear groups. 25.6 The exponential mapping; logarithmic coordinates. 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad . 25.8 Auxiliary lemmas on formal derivatives. 25.9 An auxiliary lemma on the differentiation of exponentials. 25.10 The Campbe. N° de réf. du vendeur 9783642510786
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. reprint edition. 336 pages. 9.25x6.10x0.80 inches. In Stock. N° de réf. du vendeur x-3642510787
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 18 Elementary Group Theory.- 18.1 The group axioms examples.- 18.2 Elementary consequences of the axioms further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The . N° de réf. du vendeur 5063275
Quantité disponible : Plus de 20 disponibles
Vendeur : dsmbooks, Liverpool, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur D8F0-0-M-3642510787-6
Quantité disponible : 1 disponible(s)