With his work, Martin Nebe provides principal insights into the mechanical response of composite pressure vessels subjected to internal pressure. By establishing and validating an in situ characterization methodology, the vessel’s geometry, its deformation behavior and the damage evolution process under internal pressure loading become accessible. This not only permits to trace back certain phenomena related to the manufacturing of these components but also allows to verify analytical and numerical modeling strategies. The exercised correlation of predicted and experimental results delivers detailed insights into design considerations to composite pressure vessels such as the definition of stacking sequence. The transfer of knowledge to a fullscale vessel geometry, which is representative for the use in fuel cell electric vehicles underlines the industrial application of this work. By combining numerical modeling, filament winding and experimental characterization, this work provides asound foundation for future developments in the area of composite pressure vessels used for hydrogen storage.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
About the author
Martin Nebe worked as Ph.D. candidate at the Fuel Cell Department of an automotive company. In cooperation with the Department of Materials Test Engineering (WPT) at the TU Dortmund University, he completed his Ph.D. about the characterization, the analysis and the design of composite pressure vessels used for hydrogen storage.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783658357962_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783658357962
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -With his work, Martin Nebe provides principal insights into the mechanical response of composite pressure vessels subjected to internal pressure. By establishing and validating an in situ characterization methodology, the vessel's geometry, its deformation behavior and the damage evolution process under internal pressure loading become accessible. This not only permits to trace back certain phenomena related to the manufacturing of these components but also allows to verify analytical and numerical modeling strategies. The exercised correlation of predicted and experimental results delivers detailed insights into design considerations to composite pressure vessels such as the definition of stacking sequence. The transfer of knowledge to a fullscale vessel geometry, which is representative for the use in fuel cell electric vehicles underlines the industrial application of this work. By combining numerical modeling, filament winding and experimental characterization, this work provides asound foundation for future developments in the area of composite pressure vessels used for hydrogen storage. 216 pp. Englisch. N° de réf. du vendeur 9783658357962
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. With his work, Martin Nebe provides principal insights into the mechanical response of composite pressure vessels subjected to internal pressure.With his work, Martin Nebe provides principal insights into the mechanical response of composite pressure ve. N° de réf. du vendeur 508579275
Quantité disponible : Plus de 20 disponibles
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. In Situ Characterization Methodology for the Design and Analysis of Composite Pressure Vessels | Martin Nebe | Taschenbuch | xxxiv | Englisch | 2022 | Springer Gabler | EAN 9783658357962 | Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, 65189 Wiesbaden, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 120559131
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -With his work, Martin Nebe provides principal insights into the mechanical response of composite pressure vessels subjected to internal pressure. By establishing and validating an in situ characterization methodology, the vessel¿s geometry, its deformation behavior and the damage evolution process under internal pressure loading become accessible. This not only permits to trace back certain phenomena related to the manufacturing of these components but also allows to verify analytical and numerical modeling strategies. The exercised correlation of predicted and experimental results delivers detailed insights into design considerations to composite pressure vessels such as the definition of stacking sequence. The transfer of knowledge to a fullscale vessel geometry, which is representative for the use in fuel cell electric vehicles underlines the industrial application of this work. By combining numerical modeling, filament winding and experimental characterization, this work provides asound foundation for future developments in the area of composite pressure vessels used for hydrogen storage.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 216 pp. Englisch. N° de réf. du vendeur 9783658357962
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - With his work, Martin Nebe provides principal insights into the mechanical response of composite pressure vessels subjected to internal pressure. By establishing and validating an in situ characterization methodology, the vessel's geometry, its deformation behavior and the damage evolution process under internal pressure loading become accessible. This not only permits to trace back certain phenomena related to the manufacturing of these components but also allows to verify analytical and numerical modeling strategies. The exercised correlation of predicted and experimental results delivers detailed insights into design considerations to composite pressure vessels such as the definition of stacking sequence. The transfer of knowledge to a fullscale vessel geometry, which is representative for the use in fuel cell electric vehicles underlines the industrial application of this work. By combining numerical modeling, filament winding and experimental characterization, this work provides asound foundation for future developments in the area of composite pressure vessels used for hydrogen storage. N° de réf. du vendeur 9783658357962
Quantité disponible : 1 disponible(s)