Dynamically reconfigurable architectures (DRA) have the potential for achieving high performance at a relatively low cost for a wide range of applications. DRA combine programmable processing units with reconfigurable hardware units. The later is usually based on dynamically reconfigurable Field Programmable Gate Array (FPGA). Designers have used the temporal partitioning approach to divide the application into temporal partitions, which are configured one after the one on target FPGA. The first partition receives input data, performs computations and stores the intermediate data into an on-board memory. The device is then reconfigured for the next partition, which computes results based on intermediate data from the previous partition. A controller interacts with both the reconfigurable hardware and the memory and is used to load new configuration. The temporal partitioning has become an essential issue for several important VLSI applications. Application with several tasks has entailed problem complexities that are unmanageable for existing programmable device.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dynamically reconfigurable architectures (DRA) have the potential for achieving high performance at a relatively low cost for a wide range of applications. DRA combine programmable processing units with reconfigurable hardware units. The later is usually based on dynamically reconfigurable Field Programmable Gate Array (FPGA). Designers have used the temporal partitioning approach to divide the application into temporal partitions, which are configured one after the one on target FPGA. The first partition receives input data, performs computations and stores the intermediate data into an on-board memory. The device is then reconfigured for the next partition, which computes results based on intermediate data from the previous partition. A controller interacts with both the reconfigurable hardware and the memory and is used to load new configuration. The temporal partitioning has become an essential issue for several important VLSI applications. Application with several tasks has entailed problem complexities that are unmanageable for existing programmable device.
Dr Bouraoui Ouni is currently an associate professor at national engineering school of Sousse.Dr. Bouraoui ouni has authored/co-authored over of tens papers in international journals and conferences. He served as a reviewer for several international journals conferences.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 29,69 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ouni BouraouiDr Bouraoui Ouni is currently an associate professor at national engineering school of Sousse.Dr. Bouraoui ouni has authored/co-authored over of tens papers in international journals and conferences. He served as a. N° de réf. du vendeur 5133435
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Dynamically reconfigurable architectures (DRA) have the potential for achieving high performance at a relatively low cost for a wide range of applications. DRA combine programmable processing units with reconfigurable hardware units. The later is usually based on dynamically reconfigurable Field Programmable Gate Array (FPGA). Designers have used the temporal partitioning approach to divide the application into temporal partitions, which are configured one after the one on target FPGA. The first partition receives input data, performs computations and stores the intermediate data into an on-board memory. The device is then reconfigured for the next partition, which computes results based on intermediate data from the previous partition. A controller interacts with both the reconfigurable hardware and the memory and is used to load new configuration. The temporal partitioning has become an essential issue for several important VLSI applications. Application with several tasks has entailed problem complexities that are unmanageable for existing programmable device. N° de réf. du vendeur 9783659128370
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Dynamically reconfigurable architectures (DRA) have the potential for achieving high performance at a relatively low cost for a wide range of applications. DRA combine programmable processing units with reconfigurable hardware units. The later is usually based on dynamically reconfigurable Field Programmable Gate Array (FPGA). Designers have used the temporal partitioning approach to divide the application into temporal partitions, which are configured one after the one on target FPGA. The first partition receives input data, performs computations and stores the intermediate data into an on-board memory. The device is then reconfigured for the next partition, which computes results based on intermediate data from the previous partition. A controller interacts with both the reconfigurable hardware and the memory and is used to load new configuration. The temporal partitioning has become an essential issue for several important VLSI applications. Application with several tasks has entailed problem complexities that are unmanageable for existing programmable device. 200 pp. Englisch. N° de réf. du vendeur 9783659128370
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Dynamically reconfigurable architectures (DRA) have the potential for achieving high performance at a relatively low cost for a wide range of applications. DRA combine programmable processing units with reconfigurable hardware units. The later is usually based on dynamically reconfigurable Field Programmable Gate Array (FPGA). Designers have used the temporal partitioning approach to divide the application into temporal partitions, which are configured one after the one on target FPGA. The first partition receives input data, performs computations and stores the intermediate data into an on-board memory. The device is then reconfigured for the next partition, which computes results based on intermediate data from the previous partition. A controller interacts with both the reconfigurable hardware and the memory and is used to load new configuration. The temporal partitioning has become an essential issue for several important VLSI applications. Application with several tasks has entailed problem complexities that are unmanageable for existing programmable device.Books on Demand GmbH, Überseering 33, 22297 Hamburg 200 pp. Englisch. N° de réf. du vendeur 9783659128370
Quantité disponible : 2 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79636591283766
Quantité disponible : 1 disponible(s)