Prediction is a phenomenon of knowing what may happen to a system in the next coming time periods. Weather is a time series based, continuous, data-intensive, dynamic, and chaotic process.Due to dependence of weather on time series based data and non-linearity in climatic physics neural networks are suitable to predict meteorological processes. In the present research, firstly weather related data have been collected, weather parameters have been selected, N-Sliding window technique is applied, relations between dependent parameters are found and data has been normalized to feed to the network as input. After the per-processing of data, suitable neural network architecture has been determined and then the network has been trained by feeding the input as well as output data set under supervised training. Afterwards, testing of the networks has been done for different input sets to check how accurately the network has been trained. Finally, a comparison between the existing and proposed time series based technique has been done. The proposed hybrid technique can learn efficiently by combining the strengths of genetic algorithm with back propagation algorithm.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Prediction is a phenomenon of knowing what may happen to a system in the next coming time periods. Weather is a time series based, continuous, data-intensive, dynamic, and chaotic process.Due to dependence of weather on time series based data and non-linearity in climatic physics neural networks are suitable to predict meteorological processes. In the present research, firstly weather related data have been collected, weather parameters have been selected, N-Sliding window technique is applied, relations between dependent parameters are found and data has been normalized to feed to the network as input. After the per-processing of data, suitable neural network architecture has been determined and then the network has been trained by feeding the input as well as output data set under supervised training. Afterwards, testing of the networks has been done for different input sets to check how accurately the network has been trained. Finally, a comparison between the existing and proposed time series based technique has been done. The proposed hybrid technique can learn efficiently by combining the strengths of genetic algorithm with back propagation algorithm.
Er. Pankaj Bhambri completed his M.Tech. (CSE) from Guru Nanak Dev Engineering College, Ludhiana after completing B.E. (IT) with HONORS from Dr. B.R.Ambedkar University, Agra. He has about 10 years of teaching experience. He has contributed in the areas of bioinformatics, image processing and parallel computing through books & research papers.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 64. N° de réf. du vendeur 26126734893
Quantité disponible : 4 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Prediction is a phenomenon of knowing what may happen to a system in the next coming time periods. Weather is a time series based, continuous, data-intensive, dynamic, and chaotic process.Due to dependence of weather on time series based data and non-linearity in climatic physics neural networks are suitable to predict meteorological processes. In the present research, firstly weather related data have been collected, weather parameters have been selected, N-Sliding window technique is applied, relations between dependent parameters are found and data has been normalized to feed to the network as input. After the per-processing of data, suitable neural network architecture has been determined and then the network has been trained by feeding the input as well as output data set under supervised training. Afterwards, testing of the networks has been done for different input sets to check how accurately the network has been trained. Finally, a comparison between the existing and proposed time series based technique has been done. The proposed hybrid technique can learn efficiently by combining the strengths of genetic algorithm with back propagation algorithm. 64 pp. Englisch. N° de réf. du vendeur 9783659401237
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 64 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. N° de réf. du vendeur 133852658
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 64. N° de réf. du vendeur 18126734887
Quantité disponible : 4 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Prediction is a phenomenon of knowing what may happen to a system in the next coming time periods. Weather is a time series based, continuous, data-intensive, dynamic, and chaotic process.Due to dependence of weather on time series based data and non-linearity in climatic physics neural networks are suitable to predict meteorological processes. In the present research, firstly weather related data have been collected, weather parameters have been selected, N-Sliding window technique is applied, relations between dependent parameters are found and data has been normalized to feed to the network as input. After the per-processing of data, suitable neural network architecture has been determined and then the network has been trained by feeding the input as well as output data set under supervised training. Afterwards, testing of the networks has been done for different input sets to check how accurately the network has been trained. Finally, a comparison between the existing and proposed time series based technique has been done. The proposed hybrid technique can learn efficiently by combining the strengths of genetic algorithm with back propagation algorithm.Books on Demand GmbH, Überseering 33, 22297 Hamburg 64 pp. Englisch. N° de réf. du vendeur 9783659401237
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Prediction is a phenomenon of knowing what may happen to a system in the next coming time periods. Weather is a time series based, continuous, data-intensive, dynamic, and chaotic process.Due to dependence of weather on time series based data and non-linearity in climatic physics neural networks are suitable to predict meteorological processes. In the present research, firstly weather related data have been collected, weather parameters have been selected, N-Sliding window technique is applied, relations between dependent parameters are found and data has been normalized to feed to the network as input. After the per-processing of data, suitable neural network architecture has been determined and then the network has been trained by feeding the input as well as output data set under supervised training. Afterwards, testing of the networks has been done for different input sets to check how accurately the network has been trained. Finally, a comparison between the existing and proposed time series based technique has been done. The proposed hybrid technique can learn efficiently by combining the strengths of genetic algorithm with back propagation algorithm. N° de réf. du vendeur 9783659401237
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Temporal Weather Prediction using Genetic Algorithm | Utilizing the techniques of Back Propagation Algorithms | Pankaj Bhambri (u. a.) | Taschenbuch | 64 S. | Englisch | 2013 | LAP LAMBERT Academic Publishing | EAN 9783659401237 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. N° de réf. du vendeur 105595517
Quantité disponible : 5 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
paperback. Etat : New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book. N° de réf. du vendeur ERICA82936594012346
Quantité disponible : 1 disponible(s)