The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data.
Nuttapod graduated a M.Sc. in Computer Science from King Mongkut’s Institute of Technology,Thailand with outstanding thesis award. He completed a PhD in Computer and Information Science from Auckland University of Technology, New Zealand under the supervision of Prof. Nikola Kasabov and Assoc. Prof. Petia Georgieva.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 5155785
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783659430800
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783659430800_new
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783659430800
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783659430800
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data. N° de réf. du vendeur 9783659430800
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data. 256 pp. Englisch. N° de réf. du vendeur 9783659430800
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data.Books on Demand GmbH, Überseering 33, 22297 Hamburg 256 pp. Englisch. N° de réf. du vendeur 9783659430800
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020285716
Quantité disponible : Plus de 20 disponibles