In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr. Rupinder Singh is Professor in Production Engineering at Guru Nanak Dev Engineering College, Ludhiana. He has published more than 200 research papers in area of manufacturing engineering. Er. Vishal Mahajan is M.Tech research scholar in Dept. of Production Engineering. His area of interest is metal casting.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition. 76 pp. Englisch. N° de réf. du vendeur 9783659432088
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Singh RupinderDr. Rupinder Singh is Professor in Production Engineering at Guru Nanak Dev Engineering College, Ludhiana. He has published more than 200 research papers in area of manufacturing engineering. Er. Vishal Mahajan is M.Tec. N° de réf. du vendeur 5155858
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition.Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. N° de réf. du vendeur 9783659432088
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition. N° de réf. du vendeur 9783659432088
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Reduction in cycle time of investment casting process | by advancements in shell moulding | Rupinder Singh (u. a.) | Taschenbuch | 76 S. | Englisch | 2013 | LAP LAMBERT Academic Publishing | EAN 9783659432088 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. N° de réf. du vendeur 105722143
Quantité disponible : 5 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. N° de réf. du vendeur ERICA79736594320836
Quantité disponible : 1 disponible(s)