CORDIC is an acronym for COrdinate Rotation Digital Computer. The CORDIC method is the most versatile of all the algorithms that can be used to evaluate elementary functions. The same hardware can be used to compute trigonometric ratios (sin, cos, tan, etc.), hyperbolic ratios (sinh, cosh, tanh), multiplication, division, inverse trigonometric (arcsin, arccos) and inverse hyperbolic ratios (arcsinh, arccosh), with a slight modification it can also compute logarithms, exponentials, etc. In this work, it has been found that CORDIC algorithm requires 3 adders/subtractors and 3 registers. So it is multiplierless approach and it saves a lot of hardware and hence power dissipation is very low as compared to other methods. Due to the simplicity of the involved operations, the CORDIC algorithm is very well suited for VLSI implementation. In this work, CORDIC algorithm, pipeline CORDIC, control CORDIC and DFT (Discrete Fourier Transform) have been implemented in XILINX Spartan 3E FPGA kit using VHDL. The comparison of original CORDIC on the basis of their power, speed, area required to implement in chip designing, number of iteration etc. have been discussed.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
CORDIC is an acronym for COrdinate Rotation Digital Computer. The CORDIC method is the most versatile of all the algorithms that can be used to evaluate elementary functions. The same hardware can be used to compute trigonometric ratios (sin, cos, tan, etc.), hyperbolic ratios (sinh, cosh, tanh), multiplication, division, inverse trigonometric (arcsin, arccos) and inverse hyperbolic ratios (arcsinh, arccosh), with a slight modification it can also compute logarithms, exponentials, etc. In this work, it has been found that CORDIC algorithm requires 3 adders/subtractors and 3 registers. So it is multiplierless approach and it saves a lot of hardware and hence power dissipation is very low as compared to other methods. Due to the simplicity of the involved operations, the CORDIC algorithm is very well suited for VLSI implementation. In this work, CORDIC algorithm, pipeline CORDIC, control CORDIC and DFT (Discrete Fourier Transform) have been implemented in XILINX Spartan 3E FPGA kit using VHDL. The comparison of original CORDIC on the basis of their power, speed, area required to implement in chip designing, number of iteration etc. have been discussed.
I am Deepika Ghai. I have completed M.tech(VLSI) from Thapar University, Patiala (India). Now I am pursuing Ph.d from PEC Unversity of Technology, Chandigarh (India). My Research areas is in Digital signal processing, Image processing, VLSI signal processing. I believe in the saying learn to give, not to take learn to serve, not to rule.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLING22Oct2817100472594
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783659435997
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 108. N° de réf. du vendeur 26128117442
Quantité disponible : 4 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783659435997
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 108 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. N° de réf. du vendeur 131421469
Quantité disponible : 4 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783659435997_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9783659435997
Quantité disponible : 10 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 108. N° de réf. du vendeur 18128117448
Quantité disponible : 4 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -CORDIC is an acronym for COrdinate Rotation Digital Computer. The CORDIC method is the most versatile of all the algorithms that can be used to evaluate elementary functions. The same hardware can be used to compute trigonometric ratios (sin, cos, tan, etc.), hyperbolic ratios (sinh, cosh, tanh), multiplication, division, inverse trigonometric (arcsin, arccos) and inverse hyperbolic ratios (arcsinh, arccosh), with a slight modification it can also compute logarithms, exponentials, etc. In this work, it has been found that CORDIC algorithm requires 3 adders/subtractors and 3 registers. So it is multiplierless approach and it saves a lot of hardware and hence power dissipation is very low as compared to other methods. Due to the simplicity of the involved operations, the CORDIC algorithm is very well suited for VLSI implementation. In this work, CORDIC algorithm, pipeline CORDIC, control CORDIC and DFT (Discrete Fourier Transform) have been implemented in XILINX Spartan 3E FPGA kit using VHDL. The comparison of original CORDIC on the basis of their power, speed, area required to implement in chip designing, number of iteration etc. have been discussed. 108 pp. Englisch. N° de réf. du vendeur 9783659435997
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ghai DeepikaI am Deepika Ghai. I have completed M.tech(VLSI) from Thapar University, Patiala (India). Now I am pursuing Ph.d from PEC Unversity of Technology, Chandigarh (India). My Research areas is in Digital signal processing, Ima. N° de réf. du vendeur 5156105
Quantité disponible : Plus de 20 disponibles