Machine Learning Approaches for Target Identification and Validation in Drug Discovery examines the transformative role of machine learning (ML) in enhancing the drug discovery process. The introduction highlights the importance of accurate target identification and validation, while subsequent sections delve into various ML algorithms for predicting potential drug targets based on biological data. Gene prioritization methods are discussed, showcasing how ML can effectively rank disease-associated genes. Additionally, the integration of ML with knowledge graphs is explored, illustrating how these tools enhance data connectivity and decision-making. Finally, the importance of information extraction through data mining and natural language processing is addressed, illustrating how these approaches help researchers extract valuable insights from large datasets, thereby advancing the field of drug discovery.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 7,65 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9783659469923
Quantité disponible : 2 disponible(s)
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
Paperback. Etat : new. Paperback. Machine Learning Approaches for Target Identification and Validation in Drug Discovery examines the transformative role of machine learning (ML) in enhancing the drug discovery process. The introduction highlights the importance of accurate target identification and validation, while subsequent sections delve into various ML algorithms for predicting potential drug targets based on biological data. Gene prioritization methods are discussed, showcasing how ML can effectively rank disease-associated genes. Additionally, the integration of ML with knowledge graphs is explored, illustrating how these tools enhance data connectivity and decision-making. Finally, the importance of information extraction through data mining and natural language processing is addressed, illustrating how these approaches help researchers extract valuable insights from large datasets, thereby advancing the field of drug discovery. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783659469923
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783659469923
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783659469923
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783659469923_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26404170374
Quantité disponible : 4 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine Learning Approaches for Target Identification and Validation in Drug Discovery examines the transformative role of machine learning (ML) in enhancing the drug discovery process. The introduction highlights the importance of accurate target identification and validation, while subsequent sections delve into various ML algorithms for predicting potential drug targets based on biological data. Gene prioritization methods are discussed, showcasing how ML can effectively rank disease-associated genes. Additionally, the integration of ML with knowledge graphs is explored, illustrating how these tools enhance data connectivity and decision-making. Finally, the importance of information extraction through data mining and natural language processing is addressed, illustrating how these approaches help researchers extract valuable insights from large datasets, thereby advancing the field of drug discovery. 56 pp. Englisch. N° de réf. du vendeur 9783659469923
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 408983897
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18404170380
Quantité disponible : 4 disponible(s)
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Paperback. Etat : new. Paperback. Machine Learning Approaches for Target Identification and Validation in Drug Discovery examines the transformative role of machine learning (ML) in enhancing the drug discovery process. The introduction highlights the importance of accurate target identification and validation, while subsequent sections delve into various ML algorithms for predicting potential drug targets based on biological data. Gene prioritization methods are discussed, showcasing how ML can effectively rank disease-associated genes. Additionally, the integration of ML with knowledge graphs is explored, illustrating how these tools enhance data connectivity and decision-making. Finally, the importance of information extraction through data mining and natural language processing is addressed, illustrating how these approaches help researchers extract valuable insights from large datasets, thereby advancing the field of drug discovery. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9783659469923
Quantité disponible : 1 disponible(s)