Most developed learning algorithms are designed for environments in which all the relevant data is stored at single computer site. Advances in network technology and the Internet as well as the growing size of data have contributed to the proliferation of distributed data mining. Therefore, previously developed learning algorithms for computations with such distributed databases require that all data stored in distributed locations must be transferred to a common site and recompiled as one complete and local dataset before the construction can take place. The danger in this transfer is obvious if the data itself is innately sensitive, or the necessary bandwidth to efficiently transmit the data to a single site is not available. In this book, new algorithms have been developed to preserve the privacy of the data and minimize the cost of communication among the database nodes by gathering statistical summaries at each distributed database and then passing messages describing those summaries between the participating sites. This is much more efficient than transferring the complete databases to a single site, join these databases, and then execute algorithms with this data.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Most developed learning algorithms are designed for environments in which all the relevant data is stored at single computer site. Advances in network technology and the Internet as well as the growing size of data have contributed to the proliferation of distributed data mining. Therefore, previously developed learning algorithms for computations with such distributed databases require that all data stored in distributed locations must be transferred to a common site and recompiled as one complete and local dataset before the construction can take place. The danger in this transfer is obvious if the data itself is innately sensitive, or the necessary bandwidth to efficiently transmit the data to a single site is not available. In this book, new algorithms have been developed to preserve the privacy of the data and minimize the cost of communication among the database nodes by gathering statistical summaries at each distributed database and then passing messages describing those summaries between the participating sites. This is much more efficient than transferring the complete databases to a single site, join these databases, and then execute algorithms with this data.
Ibrahim Attiya is a faculty member at Zagazig University, Egypt. He received his BSc and MSc degrees in Computer Science from the Faculty of Science, Zagazig University, Egypt. Currently, he is a PhD candidate at University of Science and Technology Beijing (USTB), Beijing, China. His research interests include Distributed and Cloud Computing.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Attiya IbrahimIbrahim Attiya is a faculty member at Zagazig University, Egypt. He received his BSc and MSc degrees in Computer Science from the Faculty of Science, Zagazig University, Egypt. Currently, he is a PhD candidate at Univer. N° de réf. du vendeur 5158518
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Most developed learning algorithms are designed for environments in which all the relevant data is stored at single computer site. Advances in network technology and the Internet as well as the growing size of data have contributed to the proliferation of distributed data mining. Therefore, previously developed learning algorithms for computations with such distributed databases require that all data stored in distributed locations must be transferred to a common site and recompiled as one complete and local dataset before the construction can take place. The danger in this transfer is obvious if the data itself is innately sensitive, or the necessary bandwidth to efficiently transmit the data to a single site is not available. In this book, new algorithms have been developed to preserve the privacy of the data and minimize the cost of communication among the database nodes by gathering statistical summaries at each distributed database and then passing messages describing those summaries between the participating sites. This is much more efficient than transferring the complete databases to a single site, join these databases, and then execute algorithms with this data. 132 pp. Englisch. N° de réf. du vendeur 9783659477928
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Most developed learning algorithms are designed for environments in which all the relevant data is stored at single computer site. Advances in network technology and the Internet as well as the growing size of data have contributed to the proliferation of distributed data mining. Therefore, previously developed learning algorithms for computations with such distributed databases require that all data stored in distributed locations must be transferred to a common site and recompiled as one complete and local dataset before the construction can take place. The danger in this transfer is obvious if the data itself is innately sensitive, or the necessary bandwidth to efficiently transmit the data to a single site is not available. In this book, new algorithms have been developed to preserve the privacy of the data and minimize the cost of communication among the database nodes by gathering statistical summaries at each distributed database and then passing messages describing those summaries between the participating sites. This is much more efficient than transferring the complete databases to a single site, join these databases, and then execute algorithms with this data. N° de réf. du vendeur 9783659477928
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Most developed learning algorithms are designed for environments in which all the relevant data is stored at single computer site. Advances in network technology and the Internet as well as the growing size of data have contributed to the proliferation of distributed data mining. Therefore, previously developed learning algorithms for computations with such distributed databases require that all data stored in distributed locations must be transferred to a common site and recompiled as one complete and local dataset before the construction can take place. The danger in this transfer is obvious if the data itself is innately sensitive, or the necessary bandwidth to efficiently transmit the data to a single site is not available. In this book, new algorithms have been developed to preserve the privacy of the data and minimize the cost of communication among the database nodes by gathering statistical summaries at each distributed database and then passing messages describing those summaries between the participating sites. This is much more efficient than transferring the complete databases to a single site, join these databases, and then execute algorithms with this data.Books on Demand GmbH, Überseering 33, 22297 Hamburg 132 pp. Englisch. N° de réf. du vendeur 9783659477928
Quantité disponible : 1 disponible(s)