The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle’s control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller.
He received in 1994 his BS from the Chilean Naval Polytechnic Academy, in 2006 a MS from Federico Santa Maria University, both in electronic engineering, and his PhD in aerospace engineering from the University of Kansas, in 2013. He is a postdoc at the University of Kansas, working in nonlinear robust control for autonomous vehicles.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 23 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisVendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle's control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller. 168 pp. Englisch. N° de réf. du vendeur 9783659554056
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle's control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller. N° de réf. du vendeur 9783659554056
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Garcia GonzaloHe received in 1994 his BS from the Chilean Naval Polytechnic Academy, in 2006 a MS from Federico Santa Maria University, both in electronic engineering, and his PhD in aerospace engineering from the University of Kansa. N° de réf. du vendeur 5164451
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 168. N° de réf. du vendeur 26128182966
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 168 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. N° de réf. du vendeur 131356009
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 168. N° de réf. du vendeur 18128182972
Quantité disponible : 4 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
paperback. Etat : New. New. book. N° de réf. du vendeur ERICA82936595540576
Quantité disponible : 1 disponible(s)