Electrical Discharge Machining (EDM) has steadily gained importance over the years because of its ability to cut and shape a wide variety of materials and complicated shapes with high accuracy. The objective of this work is to study the distribution of input energy during EDM process by experimental and mathematical modeling. This further helps us to find the input parameters for optimum utilization of energy. During the EDM process, the electrical energy is converted into heat energy, and this energy is distributed among the tool and workpiece electrodes, and the dielectric fluid. This energy is used for the erosion of electrodes, stored and conducted through the workpiece, tool and dielectric fluid, and some part of energy is lost in radiations etc. The fraction of the energy which is used for the erosion of workpiece is the useful energy, and this energy should have maximum value for the optimum results. The effectiveness of the EDM process is evaluated in terms of the material removal rate, relative wear ratio and the surface roughness of the machined work piece surface. The energy distribution in the EDM process influences these machining characteristics.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Electrical Discharge Machining (EDM) has steadily gained importance over the years because of its ability to cut and shape a wide variety of materials and complicated shapes with high accuracy. The objective of this work is to study the distribution of input energy during EDM process by experimental and mathematical modeling. This further helps us to find the input parameters for optimum utilization of energy. During the EDM process, the electrical energy is converted into heat energy, and this energy is distributed among the tool and workpiece electrodes, and the dielectric fluid. This energy is used for the erosion of electrodes, stored and conducted through the workpiece, tool and dielectric fluid, and some part of energy is lost in radiations etc. The fraction of the energy which is used for the erosion of workpiece is the useful energy, and this energy should have maximum value for the optimum results. The effectiveness of the EDM process is evaluated in terms of the material removal rate, relative wear ratio and the surface roughness of the machined work piece surface. The energy distribution in the EDM process influences these machining characteristics.
Author is working as Assistant Professor at Guru Nanak Dev University, Regional Campus, Jalandhar, Punjab, India. He completed his Doctoral and Bachelor degrees in Mechanical Engineering and M. Tech. in Material Science and Technology. His research area is EDM and Surface Engg.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Electrical Discharge Machining (EDM) has steadily gained importance over the years because of its ability to cut and shape a wide variety of materials and complicated shapes with high accuracy. The objective of this work is to study the distribution of input energy during EDM process by experimental and mathematical modeling. This further helps us to find the input parameters for optimum utilization of energy. During the EDM process, the electrical energy is converted into heat energy, and this energy is distributed among the tool and workpiece electrodes, and the dielectric fluid. This energy is used for the erosion of electrodes, stored and conducted through the workpiece, tool and dielectric fluid, and some part of energy is lost in radiations etc. The fraction of the energy which is used for the erosion of workpiece is the useful energy, and this energy should have maximum value for the optimum results. The effectiveness of the EDM process is evaluated in terms of the material removal rate, relative wear ratio and the surface roughness of the machined work piece surface. The energy distribution in the EDM process influences these machining characteristics. 112 pp. Englisch. N° de réf. du vendeur 9783659599101
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26394687108
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 401722715
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18394687118
Quantité disponible : 4 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Singh Er. HarminderAuthor is working as Assistant Professor at Guru Nanak Dev University, Regional Campus, Jalandhar, Punjab, India. He completed his Doctoral and Bachelor degrees in Mechanical Engineering and M. Tech. in Material Sc. N° de réf. du vendeur 5167735
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 112 pages. 8.66x5.91x0.26 inches. In Stock. N° de réf. du vendeur 3659599107
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Electrical Discharge Machining (EDM) has steadily gained importance over the years because of its ability to cut and shape a wide variety of materials and complicated shapes with high accuracy. The objective of this work is to study the distribution of input energy during EDM process by experimental and mathematical modeling. This further helps us to find the input parameters for optimum utilization of energy. During the EDM process, the electrical energy is converted into heat energy, and this energy is distributed among the tool and workpiece electrodes, and the dielectric fluid. This energy is used for the erosion of electrodes, stored and conducted through the workpiece, tool and dielectric fluid, and some part of energy is lost in radiations etc. The fraction of the energy which is used for the erosion of workpiece is the useful energy, and this energy should have maximum value for the optimum results. The effectiveness of the EDM process is evaluated in terms of the material removal rate, relative wear ratio and the surface roughness of the machined work piece surface. The energy distribution in the EDM process influences these machining characteristics.Books on Demand GmbH, Überseering 33, 22297 Hamburg 112 pp. Englisch. N° de réf. du vendeur 9783659599101
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Electrical Discharge Machining (EDM) has steadily gained importance over the years because of its ability to cut and shape a wide variety of materials and complicated shapes with high accuracy. The objective of this work is to study the distribution of input energy during EDM process by experimental and mathematical modeling. This further helps us to find the input parameters for optimum utilization of energy. During the EDM process, the electrical energy is converted into heat energy, and this energy is distributed among the tool and workpiece electrodes, and the dielectric fluid. This energy is used for the erosion of electrodes, stored and conducted through the workpiece, tool and dielectric fluid, and some part of energy is lost in radiations etc. The fraction of the energy which is used for the erosion of workpiece is the useful energy, and this energy should have maximum value for the optimum results. The effectiveness of the EDM process is evaluated in terms of the material removal rate, relative wear ratio and the surface roughness of the machined work piece surface. The energy distribution in the EDM process influences these machining characteristics. N° de réf. du vendeur 9783659599101
Quantité disponible : 1 disponible(s)