Dynamic ridesharing is a profitable way to reduce traffic and carbon emissions by providing an opportunity for a flexible and affordable service that utilizes vehicle seating space. Matching of ride seeker requests with the rides, distributed over the roads is a tedious work. While fulfilling the request of all passengers, the total travel distance of the trip may get increased. Therefore, this book proposes an optimal dynamic ridesharing system which matches rides and requests in real time by satisfying multiple participant constraints (e.g. time bounds, availability of empty seat, maximum allowed deviation distance and minimized route ride) to minimize the total travel distance. To efficiently match ride givers and riders we are proposing a novel dynamic ride matching algorithm MRB (Minimal route bi-searching algorithm) considering all above mentioned constraints. We demonstrate working of our algorithm by developing a prototype and evaluated our system on GPS (Global positioning system) trajectories of Lahore city dataset. Evaluated results are compared with existing algorithms which shows that our system significantly reduces the travel distance and computation cost.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dynamic ridesharing is a profitable way to reduce traffic and carbon emissions by providing an opportunity for a flexible and affordable service that utilizes vehicle seating space. Matching of ride seeker requests with the rides, distributed over the roads is a tedious work. While fulfilling the request of all passengers, the total travel distance of the trip may get increased. Therefore, this book proposes an optimal dynamic ridesharing system which matches rides and requests in real time by satisfying multiple participant constraints (e.g. time bounds, availability of empty seat, maximum allowed deviation distance and minimized route ride) to minimize the total travel distance. To efficiently match ride givers and riders we are proposing a novel dynamic ride matching algorithm MRB (Minimal route bi-searching algorithm) considering all above mentioned constraints. We demonstrate working of our algorithm by developing a prototype and evaluated our system on GPS (Global positioning system) trajectories of Lahore city dataset. Evaluated results are compared with existing algorithms which shows that our system significantly reduces the travel distance and computation cost.
Samia Arshad is a software engineer,she has completed her MS from Comsats institute of information technology lahore in 2014. Has published her article in Journal of Applied Environmental and Biological Sciences in 2014. Currently working as a lecturer in COMSATS Lahore. She has a great interest in resolving real world computing problems.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 5,45 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : WeBuyBooks, Rossendale, LANCS, Royaume-Uni
Etat : Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. N° de réf. du vendeur wbb0024362224
Quantité disponible : 1 disponible(s)
Vendeur : WeBuyBooks, Rossendale, LANCS, Royaume-Uni
Etat : Good. Most items will be dispatched the same or the next working day. A copy that has been read but remains in clean condition. All of the pages are intact and the cover is intact and the spine may show signs of wear. The book may have minor markings which are not specifically mentioned. N° de réf. du vendeur wbb0024357992
Quantité disponible : 1 disponible(s)
Vendeur : Buchpark, Trebbin, Allemagne
Etat : Hervorragend. Zustand: Hervorragend | Seiten: 128 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 26053529/1
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Arshad SamiaSamia Arshad is a software engineer,she has completed her MS from Comsats institute of information technology lahore in 2014. Has published her article in Journal of Applied Environmental and Biological Sciences in 2014. N° de réf. du vendeur 158247436
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Dynamic ridesharing is a profitable way to reduce traffic and carbon emissions by providing an opportunity for a flexible and affordable service that utilizes vehicle seating space. Matching of ride seeker requests with the rides, distributed over the roads is a tedious work. While fulfilling the request of all passengers, the total travel distance of the trip may get increased. Therefore, this book proposes an optimal dynamic ridesharing system which matches rides and requests in real time by satisfying multiple participant constraints (e.g. time bounds, availability of empty seat, maximum allowed deviation distance and minimized route ride) to minimize the total travel distance. To efficiently match ride givers and riders we are proposing a novel dynamic ride matching algorithm MRB (Minimal route bi-searching algorithm) considering all above mentioned constraints. We demonstrate working of our algorithm by developing a prototype and evaluated our system on GPS (Global positioning system) trajectories of Lahore city dataset. Evaluated results are compared with existing algorithms which shows that our system significantly reduces the travel distance and computation cost. N° de réf. du vendeur 9783659756658
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Dynamic ridesharing is a profitable way to reduce traffic and carbon emissions by providing an opportunity for a flexible and affordable service that utilizes vehicle seating space. Matching of ride seeker requests with the rides, distributed over the roads is a tedious work. While fulfilling the request of all passengers, the total travel distance of the trip may get increased. Therefore, this book proposes an optimal dynamic ridesharing system which matches rides and requests in real time by satisfying multiple participant constraints (e.g. time bounds, availability of empty seat, maximum allowed deviation distance and minimized route ride) to minimize the total travel distance. To efficiently match ride givers and riders we are proposing a novel dynamic ride matching algorithm MRB (Minimal route bi-searching algorithm) considering all above mentioned constraints. We demonstrate working of our algorithm by developing a prototype and evaluated our system on GPS (Global positioning system) trajectories of Lahore city dataset. Evaluated results are compared with existing algorithms which shows that our system significantly reduces the travel distance and computation cost. 128 pp. Englisch. N° de réf. du vendeur 9783659756658
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Dynamic ridesharing is a profitable way to reduce traffic and carbon emissions by providing an opportunity for a flexible and affordable service that utilizes vehicle seating space. Matching of ride seeker requests with the rides, distributed over the roads is a tedious work. While fulfilling the request of all passengers, the total travel distance of the trip may get increased. Therefore, this book proposes an optimal dynamic ridesharing system which matches rides and requests in real time by satisfying multiple participant constraints (e.g. time bounds, availability of empty seat, maximum allowed deviation distance and minimized route ride) to minimize the total travel distance. To efficiently match ride givers and riders we are proposing a novel dynamic ride matching algorithm MRB (Minimal route bi-searching algorithm) considering all above mentioned constraints. We demonstrate working of our algorithm by developing a prototype and evaluated our system on GPS (Global positioning system) trajectories of Lahore city dataset. Evaluated results are compared with existing algorithms which shows that our system significantly reduces the travel distance and computation cost.Books on Demand GmbH, Überseering 33, 22297 Hamburg 128 pp. Englisch. N° de réf. du vendeur 9783659756658
Quantité disponible : 2 disponible(s)