The authors have established some differential formulae for the -function of two variables . The integrand of the main integral evaluated in this chapter consists of product of the -function of two variables and a class of double Barnes integral. The evaluation of four integrals of -function of two variables proposed by Singh and Mandia (2013) and their applications in deriving double half-range Fourier series for the -function of two variables. A multiple integral and a multiple half-range Fourier series of the -function of two variables are derived analogous to the double integral and double half-range Fourier series of the -function of two variables. We have evaluated an integral involving an exponential function, Sine function, generalized hypergeometric series and -function of two variables. We have introduced an even function on the interval and investigate an integral formula to evaluate the Fourier cosine series involving products of general class of multivariable polynomials (1987) and multivariable -functions due to Gautam (1986).
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
The authors have established some differential formulae for the -function of two variables . The integrand of the main integral evaluated in this chapter consists of product of the -function of two variables and a class of double Barnes integral. The evaluation of four integrals of -function of two variables proposed by Singh and Mandia (2013) and their applications in deriving double half-range Fourier series for the -function of two variables. A multiple integral and a multiple half-range Fourier series of the -function of two variables are derived analogous to the double integral and double half-range Fourier series of the -function of two variables. We have evaluated an integral involving an exponential function, Sine function, generalized hypergeometric series and -function of two variables. We have introduced an even function on the interval and investigate an integral formula to evaluate the Fourier cosine series involving products of general class of multivariable polynomials (1987) and multivariable -functions due to Gautam (1986).
Yashwant Singh is presently working as an Assistant Professor in the department of Mathematics at Government College, Kaladera, Jaipur. Dr. Yashwant is actively engaged in research and published numerous research papers and published several books for B. Sc./M.Sc./M. Phil/Ph.D.students.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Singh YashwantYashwant Singh is presently working as an Assistant Professor in the department of Mathematics at Government College, Kaladera, Jaipur. Dr. Yashwant is actively engaged in research and published numerous research papers. N° de réf. du vendeur 158248166
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The authors have established some differential formulae for the -function of two variables . The integrand of the main integral evaluated in this chapter consists of product of the -function of two variables and a class of double Barnes integral. The evaluation of four integrals of -function of two variables proposed by Singh and Mandia (2013) and their applications in deriving double half-range Fourier series for the -function of two variables. A multiple integral and a multiple half-range Fourier series of the -function of two variables are derived analogous to the double integral and double half-range Fourier series of the -function of two variables. We have evaluated an integral involving an exponential function, Sine function, generalized hypergeometric series and -function of two variables. We have introduced an even function on the interval and investigate an integral formula to evaluate the Fourier cosine series involving products of general class of multivariable polynomials (1987) and multivariable -functions due to Gautam (1986). N° de réf. du vendeur 9783659827778
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The authors have established some differential formulae for the -function of two variables . The integrand of the main integral evaluated in this chapter consists of product of the -function of two variables and a class of double Barnes integral. The evaluation of four integrals of -function of two variables proposed by Singh and Mandia (2013) and their applications in deriving double half-range Fourier series for the -function of two variables. A multiple integral and a multiple half-range Fourier series of the -function of two variables are derived analogous to the double integral and double half-range Fourier series of the -function of two variables. We have evaluated an integral involving an exponential function, Sine function, generalized hypergeometric series and -function of two variables. We have introduced an even function on the interval and investigate an integral formula to evaluate the Fourier cosine series involving products of general class of multivariable polynomials (1987) and multivariable -functions due to Gautam (1986). 180 pp. Englisch. N° de réf. du vendeur 9783659827778
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -The authors have established some differential formulae for the -function of two variables . The integrand of the main integral evaluated in this chapter consists of product of the -function of two variables and a class of double Barnes integral. The evaluation of four integrals of -function of two variables proposed by Singh and Mandia (2013) and their applications in deriving double half-range Fourier series for the -function of two variables. A multiple integral and a multiple half-range Fourier series of the -function of two variables are derived analogous to the double integral and double half-range Fourier series of the -function of two variables. We have evaluated an integral involving an exponential function, Sine function, generalized hypergeometric series and -function of two variables. We have introduced an even function on the interval and investigate an integral formula to evaluate the Fourier cosine series involving products of general class of multivariable polynomials (1987) and multivariable -functions due to Gautam (1986).Books on Demand GmbH, Überseering 33, 22297 Hamburg 180 pp. Englisch. N° de réf. du vendeur 9783659827778
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26401467775
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18401467765
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 395990688
Quantité disponible : 4 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 180 pages. 8.66x5.91x0.41 inches. In Stock. N° de réf. du vendeur 3659827770
Quantité disponible : 1 disponible(s)
Vendeur : dsmbooks, Liverpool, Royaume-Uni
paperback. Etat : New. New. SHIPS FROM MULTIPLE LOCATIONS. book. N° de réf. du vendeur D8S0-3-M-3659827770-6
Quantité disponible : 1 disponible(s)