This book integrates corporate financial risk research with graph neural network (GNN) technology to address the challenges of analyzing complex financial data and the interconnections between enterprises. It explores three key areas: 1. Dynamic Graph Representation: A framework for learning dynamic graph representations based on structural roles is proposed, capturing temporal evolution and global topological dependencies, marking the first use of recurrent learning in this context.2. Momentum Spillover Effects: A dual GNN algorithm is introduced to model the dynamic, complex inter-enterprise relationships and momentum spillover effects, offering a new approach to analyzing their impact on securities market volatility.3. Financial Risk Interpretability: To overcome the black-box nature of deep learning models, a heterogeneous GNN framework is developed to generate evidence subgraphs that reveal internal and external factors affecting enterprise financial risk, enhancing model transparency. Experimental results validate the proposed methods, showing improvements across multiple tasks, while also significantly enhancing model interpretability with faster inference times.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783659941672
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur L2-9783659941672
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur L2-9783659941672
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783659941672_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 140 pp. Englisch. N° de réf. du vendeur 9783659941672
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26404172315
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 408981956
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18404172305
Quantité disponible : 4 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Enterprise Risk Prediction and Interpretability Research Based on GNNs | Huaming Du | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2024 | LAP LAMBERT Academic Publishing | EAN 9783659941672 | Verantwortliche Person für die EU: OmniScriptum GmbH & Co. KG, Bahnhofstr. 28, 66111 Saarbrücken, info[at]akademikerverlag[dot]de | Anbieter: preigu Print on Demand. N° de réf. du vendeur 130683682
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book integrates corporate financial risk research with graph neural network (GNN) technology to address the challenges of analyzing complex financial data and the interconnections between enterprises. It explores three key areas: 1. Dynamic Graph Representation: A framework for learning dynamic graph representations based on structural roles is proposed, capturing temporal evolution and global topological dependencies, marking the first use of recurrent learning in this context.2. Momentum Spillover Effects: A dual GNN algorithm is introduced to model the dynamic, complex inter-enterprise relationships and momentum spillover effects, offering a new approach to analyzing their impact on securities market volatility.3. Financial Risk Interpretability: To overcome the black-box nature of deep learning models, a heterogeneous GNN framework is developed to generate evidence subgraphs that reveal internal and external factors affecting enterprise financial risk, enhancing model transparency. Experimental results validate the proposed methods, showing improvements across multiple tasks, while also significantly enhancing model interpretability with faster inference times.Books on Demand GmbH, Überseering 33, 22297 Hamburg 140 pp. Englisch. N° de réf. du vendeur 9783659941672
Quantité disponible : 1 disponible(s)