This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Prof. Yupeng Wang obtained his Ph.D in Condensed Matter Physics from Institute of Physics, Chinese Academy of Science (IOP CAS) in 1994. He joined IOP CAS as a professor in 1999, and has been the director of IOP since 2007. He is also the Vice-president of Chinese Physical Society. His research interests include Exactly solvable models in statistical mechanics and solid state physics, Quantum many-body physics, Ultra-cold atomic physics and Condensed matter theory. He has published about 150 papers in SCI indexed journals.
Prof. Wen-Li Yang obtained his Ph.D in Theoretical Physics from Northwest University of China in 1996. He was the Humboldt Foundation Research Fellow in Physikalisches Institut der Universitat Bonn during 2000-2002, Research Fellow in Kyoto University during 2002-2004, Research Associate/Fellow in University of Queensland during 2004-2009. Currently he is a professor in Northwest University in China. His main research areas are Infinite-dimensional Lie (super) algebras, (Classical) Quantum integrable systems and strongly correlated fermion systems. He has published more than 90 refereed journal articles and 8 conference papers/book chapters.
Prof. Junpeng Cao obtained his Ph.D in Theoretical Physics from Northwest University of China in 2001. He was a Postdoctoral fellow in IOP CAS during 2001-2003. He joined IOP in 2003, and was appointed as a professor of IOP in 2009. He mainly works on the field of Exactly solvable models in statistical mechanics and solid state physics. He has published 52 refereed journal articles.
Prof. Kangjie Shi obtained his Ph.D in Theoretical Physics from University of Illinois at Urbana-Champaign in 1987. He joined Northwest University of China as a professor in 1987. He mainly works on quantum (super) groups and Quantum integrable systems. He has published more than 40 refereed journal articles.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 28,88 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisEUR 34 expédition depuis Italie vers Etats-Unis
Destinations, frais et délaisVendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur 3570b4e36eee6756d0727e99201abe33
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems. 312 pp. Englisch. N° de réf. du vendeur 9783662516232
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces basic concepts and newly developed mathematical methods of quantum integrable modelsPresents solutions of some famous long-standing problemsServes as both a reference work for researchers and a study text for graduate students. N° de réf. du vendeur 458745328
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 310. N° de réf. du vendeur 26378318901
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 310. N° de réf. du vendeur 385552362
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 310. N° de réf. du vendeur 18378318911
Quantité disponible : 4 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 312 pp. Englisch. N° de réf. du vendeur 9783662516232
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems. N° de réf. du vendeur 9783662516232
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. reprint edition. 310 pages. 9.25x6.10x0.74 inches. In Stock. N° de réf. du vendeur __3662516233
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. reprint edition. 310 pages. 9.25x6.10x0.74 inches. In Stock. N° de réf. du vendeur 3662516233
Quantité disponible : 1 disponible(s)