Seminar paper from the year 2015 in the subject Mathematics - Applied Mathematics, grade: A, language: English, abstract: In this research, a novel method to approximate the solution of optimal control problems governed by Volterra integral equations of weakly singular types is proposed. The method introduced here is the conjugate gradient method with a discretization of the problem based on the collocation approach on graded mesh points for non linear Volterra integral equations with singular kernels. Necessary and sufficient optimality conditions for optimal control problems are also discussed. Some examples are presented to demonstrate the efficiency of the method.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 10,99 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Seminar paper from the year 2015 in the subject Mathematics - Applied Mathematics, grade: A, , language: English, abstract: In this research, a novel method to approximate the solution of optimal control problems governed by Volterra integral equations of weakly singular types is proposed. The method introduced here is the conjugate gradient method with a discretization of the problem based on the collocation approach on graded mesh points for non linear Volterra integral equations with singular kernels. Necessary and sufficient optimality conditions for optimal control problems are also discussed. Some examples are presented to demonstrate the efficiency of the method. N° de réf. du vendeur 9783668494169
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Seminar paper from the year 2015 in the subject Mathematics - Applied Mathematics, grade: A, , language: English, abstract: In this research, a novel method to approximate the solution of optimal control problems governed by Volterra integral equations of weakly singular types is proposed. The method introduced here is the conjugate gradient method with a discretization of the problem based on the collocation approach on graded mesh points for non linear Volterra integral equations with singular kernels. Necessary and sufficient optimality conditions for optimal control problems are also discussed. Some examples are presented to demonstrate the efficiency of the method. 28 pp. Englisch. N° de réf. du vendeur 9783668494169
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Seminar paper from the year 2015 in the subject Mathematics - Applied Mathematics, grade: A, , language: English, abstract: In this research, a novel method to approximate the solution of optimal control problems governed by Volterra integral equations of weakly singular types is proposed. The method introduced here is the conjugate gradient method with a discretization of the problem based on the collocation approach on graded mesh points for non linear Volterra integral equations with singular kernels. Necessary and sufficient optimality conditions for optimal control problems are also discussed. Some examples are presented to demonstrate the efficiency of the method.Books on Demand GmbH, Überseering 33, 22297 Hamburg 28 pp. Englisch. N° de réf. du vendeur 9783668494169
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Conjugate gradient method for the solution of optimal control problems governed by weakly singular Volterra integral equations with the use of the collocation method | Henry Ekah-Kunde | Taschenbuch | 28 S. | Englisch | 2017 | GRIN Verlag | EAN 9783668494169 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. N° de réf. du vendeur 109556965
Quantité disponible : 5 disponible(s)