Articles liés à A Nature Inspired Algorithm for Biclustering Microarray...

A Nature Inspired Algorithm for Biclustering Microarray Data Analysis - Couverture souple

 
9783668619531: A Nature Inspired Algorithm for Biclustering Microarray Data Analysis

Synopsis

Research Paper (undergraduate) from the year 2015 in the subject Computer Science - Bioinformatics, grade: 1, Bannari Amman Institute of Technology, language: English, abstract: Extracting meaningful information from gene expression data poses a great challenge to the community of researchers in the field of computation as well as to biologists. It is possible to determine the behavioral patterns of genes such as nature of their interaction, similarity of their behavior and so on, through the analysis of gene expression data. If two different genes show similar expression patterns across the samples, this suggests a common pattern of regulation or relationship between their functions. These patterns have huge significance and application in bioinformatics and clinical research such as drug discovery, treatment planning, accurate diagnosis, prognosis, protein network analysis and so on. In order to identify various patterns from gene expression data, data mining techniques are essential. Major data mining techniques which can be applied for the analysis of gene expression data include clustering, classification, association rule mining etc. Clustering is an important data mining technique for the analysis of gene expression data. However clustering has some disadvantages. To overcome the problems associated with clustering, biclustering is introduced. Clustering is a global model where as biclustering is a local model. Discovering such local expression patterns is essential for identifying many genetic pathways that are not apparent otherwise. It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data. Biclustering is a two dimensional clustering problem where we group the genes and samples simultaneously. It has a great potential in detecting marker genes that are associated with certain tissues or diseases. However, since the problem is NP-hard, there has b

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Balamurugan Rengeswaran received the B.E. degree in Computer Science and Engineering in 2010 from the Government College of Engineering, Salem and the M.E. degree in Computer Science and Engineering in 2012 from the Bannari Amman Institute of Technology, Sathyamangalam. He is completed his Ph.D in Information and Communication Engineering in 2016 from Anna University, Chennai. Currently he is working as an Associate Professor in Department of Computer Science and Engineering in Bharat Institute of Engineering and Technology, Hyderabad. He has published more than 17 papers in various international journals and conferences. His areas of interest include data mining and meta-heuristic optimization techniques.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurGrin Verlag
  • Date d'édition2018
  • ISBN 10 3668619530
  • ISBN 13 9783668619531
  • ReliureBroché
  • Langueanglais
  • Nombre de pages48
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 17,95

Autre devise

EUR 10,99 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour A Nature Inspired Algorithm for Biclustering Microarray...

Image fournie par le vendeur

B. Rengeswaran
Edité par GRIN Verlag, 2018
ISBN 10 : 3668619530 ISBN 13 : 9783668619531
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Research Paper (undergraduate) from the year 2015 in the subject Computer Science - Bioinformatics, grade: 1, Bannari Amman Institute of Technology, language: English, abstract: Extracting meaningful information from gene expression data poses a great challenge to the community of researchers in the field of computation as well as to biologists. It is possible to determine the behavioral patterns of genes such as nature of their interaction, similarity of their behavior and so on, through the analysis of gene expression data. If two different genes show similar expression patterns across the samples, this suggests a common pattern of regulation or relationship between their functions. These patterns have huge significance and application in bioinformatics and clinical research such as drug discovery, treatment planning, accurate diagnosis, prognosis, protein network analysis and so on.In order to identify various patterns from gene expression data, data mining techniques are essential. Major data mining techniques which can be applied for the analysis of gene expression data include clustering, classification, association rule mining etc. Clustering is an important data mining technique for the analysis of gene expression data. However clustering has some disadvantages. To overcome the problems associated with clustering, biclustering is introduced. Clustering is a global model where as biclustering is a local model. Discovering such local expression patterns is essential for identifying many genetic pathways that are not apparent otherwise. It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.Biclustering is a two dimensional clustering problem where we group the genes and samples simultaneously. It has a great potential in detecting marker genes that are associated with certain tissues or diseases. However, since the problem is NP-hard, there has been a lot of research in biclustering involving statistical and graph-theoretic. The proposed Cuckoo Search (CS) method finds the significant biclusters in large expression data. The experiment results are demonstrated on benchmark datasets. Also, this work determines the biological relevance of the biclusters with Gene Ontology in terms of function. N° de réf. du vendeur 9783668619531

Contacter le vendeur

Acheter neuf

EUR 17,95
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

B. Rengeswaran
Edité par GRIN Verlag Mrz 2018, 2018
ISBN 10 : 3668619530 ISBN 13 : 9783668619531
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Research Paper (undergraduate) from the year 2015 in the subject Computer Science - Bioinformatics, grade: 1, Bannari Amman Institute of Technology, language: English, abstract: Extracting meaningful information from gene expression data poses a great challenge to the community of researchers in the field of computation as well as to biologists. It is possible to determine the behavioral patterns of genes such as nature of their interaction, similarity of their behavior and so on, through the analysis of gene expression data. If two different genes show similar expression patterns across the samples, this suggests a common pattern of regulation or relationship between their functions. These patterns have huge significance and application in bioinformatics and clinical research such as drug discovery, treatment planning, accurate diagnosis, prognosis, protein network analysis and so on.In order to identify various patterns from gene expression data, data mining techniques are essential. Major data mining techniques which can be applied for the analysis of gene expression data include clustering, classification, association rule mining etc. Clustering is an important data mining technique for the analysis of gene expression data. However clustering has some disadvantages. To overcome the problems associated with clustering, biclustering is introduced. Clustering is a global model where as biclustering is a local model. Discovering such local expression patterns is essential for identifying many genetic pathways that are not apparent otherwise. It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.Biclustering is a two dimensional clustering problem where we group the genes and samples simultaneously. It has a great potential in detecting marker genes that are associated with certain tissues or diseases. However, since the problem is NP-hard, there has been a lot of research in biclustering involving statistical and graph-theoretic. The proposed Cuckoo Search (CS) method finds the significant biclusters in large expression data. The experiment results are demonstrated on benchmark datasets. Also, this work determines the biological relevance of the biclusters with Gene Ontology in terms of function. 48 pp. Englisch. N° de réf. du vendeur 9783668619531

Contacter le vendeur

Acheter neuf

EUR 17,95
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

B. Rengeswaran
ISBN 10 : 3668619530 ISBN 13 : 9783668619531
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Research Paper (undergraduate) from the year 2015 in the subject Computer Science - Bioinformatics, grade: 1, Bannari Amman Institute of Technology, language: English, abstract: Extracting meaningful information from gene expression data poses a great challenge to the community of researchers in the field of computation as well as to biologists. It is possible to determine the behavioral patterns of genes such as nature of their interaction, similarity of their behavior and so on, through the analysis of gene expression data. If two different genes show similar expression patterns across the samples, this suggests a common pattern of regulation or relationship between their functions. These patterns have huge significance and application in bioinformatics and clinical research such as drug discovery, treatment planning, accurate diagnosis, prognosis, protein network analysis and so on.In order to identify various patterns from gene expression data, data mining techniques are essential. Major data mining techniques which can be applied for the analysis of gene expression data include clustering, classification, association rule mining etc. Clustering is an important data mining technique for the analysis of gene expression data. However clustering has some disadvantages. To overcome the problems associated with clustering, biclustering is introduced. Clustering is a global model where as biclustering is a local model. Discovering such local expression patterns is essential for identifying many genetic pathways that are not apparent otherwise. It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.Biclustering is a two dimensional clustering problem where we group the genes and samples simultaneously. It has a great potential in detecting marker genes that are associated with certain tissues or diseases. However, since the problem is NP-hard, there has been a lot of research in biclustering involving statistical and graph-theoretic. The proposed Cuckoo Search (CS) method finds the significant biclusters in large expression data. The experiment results are demonstrated on benchmark datasets. Also, this work determines the biological relevance of the biclusters with Gene Ontology in terms of function.Books on Demand GmbH, Überseering 33, 22297 Hamburg 48 pp. Englisch. N° de réf. du vendeur 9783668619531

Contacter le vendeur

Acheter neuf

EUR 17,95
Autre devise
Frais de port : EUR 19,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Premalatha, K; Rengeswaran, B; Natarajan, A M
Edité par Grin Verlag, 2018
ISBN 10 : 3668619530 ISBN 13 : 9783668619531
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9783668619531

Contacter le vendeur

Acheter neuf

EUR 42,96
Autre devise
Frais de port : EUR 6,95
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

B. Rengeswaran
Edité par GRIN Verlag, 2018
ISBN 10 : 3668619530 ISBN 13 : 9783668619531
Neuf Taschenbuch

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. A Nature Inspired Algorithm for Biclustering Microarray Data Analysis | B. Rengeswaran (u. a.) | Taschenbuch | Paperback | 48 S. | Englisch | 2018 | GRIN Verlag | EAN 9783668619531 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. N° de réf. du vendeur 112768262

Contacter le vendeur

Acheter neuf

EUR 17,95
Autre devise
Frais de port : EUR 45
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier