A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature.
The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents the interplay of K-homology and analytic K-theoryMultidiciplinary introduction to K-theoryEqual emphasis on topology and analysisA concise introduction to the techniques used to prove the Baum-Connes conjecture. The . N° de réf. du vendeur 5278530
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^\*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^\*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature. The book is aimed at advanced graduate students and researchers in the area, leading to current research problems. N° de réf. du vendeur 9783764304089
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^\*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^\*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature. The book is aimed at advanced graduate students and researchers in the area, leading to current research problems. 140 pp. Englisch. N° de réf. du vendeur 9783764304089
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783764304089_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9783764304089
Quantité disponible : 10 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^\*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^\*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature.The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 144 pp. Englisch. N° de réf. du vendeur 9783764304089
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 144. N° de réf. du vendeur 26377936
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 144 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. N° de réf. du vendeur 7502735
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 144. N° de réf. du vendeur 18377946
Quantité disponible : 4 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783764304089
Quantité disponible : Plus de 20 disponibles