These notes are based on lectures given in the semmar on "Coding Theory and Algebraic Geometry" held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 3,50 expédition vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Ammareal, Morangis, France
Softcover. Etat : Bon. Ancien livre de bibliothèque. Traces d'usure sur la couverture. Petite(s) trace(s) de pliure sur la couverture. Salissures sur la tranche. Edition 1988. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Signs of wear on the cover. Slightly creased cover. Stains on the edge. Edition 1988. Ammareal gives back up to 15% of this item's net price to charity organizations. N° de réf. du vendeur E-927-354
Quantité disponible : 1 disponible(s)
Vendeur : books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Allemagne
Broschiert. Etat : Gut. 83 Seiten Das Buch befindet sich in einem ordentlich erhaltenen Zustand. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 160. N° de réf. du vendeur 1705000
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 14 LIN 9783764322304 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2503338
Quantité disponible : 1 disponible(s)
Vendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Poor. Volume 12. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In poor condition, suitable as a reading copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,250grams, ISBN:3764322306. N° de réf. du vendeur 9786236
Quantité disponible : 1 disponible(s)
Vendeur : Fireside Bookshop, Stroud, GLOS, Royaume-Uni
Paperback. Etat : Very Good. Type: Book N.B. Small plain label to inside front cover. Light crease to top corners of covers. N° de réf. du vendeur 054643
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. I: Coding Theory.- 1. Finite fields.- 2. Error-correcting codes.- 3. Linear codes.- 4. Cyclic codes.- 5. Classical Goppa codes.- 6. Bounds on codes.- 7. Self-dual codes.- 8. Codes from curves.- References.- II: Algebraic Geometry.- I. Elementary concepts fr. N° de réf. du vendeur 5278873
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783764322304_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - These notes are based on lectures given in the semmar on 'Coding Theory and Algebraic Geometry' held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course. N° de réf. du vendeur 9783764322304
Quantité disponible : 1 disponible(s)
Vendeur : Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. Neuware -These notes are based on lectures given in the semmar on 'Coding Theory and Algebraic Geometry' held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course. 88 pp. Englisch. N° de réf. du vendeur 9783764322304
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. Neuware -These notes are based on lectures given in the semmar on 'Coding Theory and Algebraic Geometry' held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course. 88 pp. Englisch. N° de réf. du vendeur 9783764322304
Quantité disponible : 1 disponible(s)