As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob- lems (Paris 1900) " . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field". This message can be found in the 12-th problem "Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality" standing in the middle of HILBERTS'S pro- gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 7 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. VI-160 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16794 9783764328351 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2480145
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Bernhardt, Kassel, Allemagne
kartoniert. Etat : Sehr gut. Zust: Gutes Exemplar. 160 Seiten, mit Abbildungen, Englisch 322g. N° de réf. du vendeur 494382
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Smock, Freiburg, Allemagne
Etat : Gut. Formateinband: Broschierte Ausgabe VI, 160 S. (24 cm) 1. Aufl.; Gut und sauber erhalten. Sprache: Englisch Gewicht in Gramm: 450 [Stichwörter: David Hilbert, Algebraic Geometry, ; Global analysis; Number theory]. N° de réf. du vendeur 60008
Quantité disponible : 1 disponible(s)
Vendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 172 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 408379/202
Quantité disponible : 2 disponible(s)
Vendeur : Second Story Books, ABAA, Rockville, MD, Etats-Unis
Softcover. Octavo; G-; Ex-library; Paperback; Spine, green with black print; Cover has light edgewear, call number label on front, remains of label on spine, else light shelfwear; Text block has library stamp on top edge, front flyleaf has library labels, penciled call number on copyright page, endpapers gutters taped, else clean and tight; vi, 160 pages. 1361713. FP New Rockville Stock. N° de réf. du vendeur 1361713
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but . N° de réf. du vendeur 5279004
Quantité disponible : Plus de 20 disponibles
Vendeur : Fireside Bookshop, Stroud, GLOS, Royaume-Uni
Paperback. Etat : Very Good. Type: Book N.B. Small gold label to ffep. Corners a little rubbed. N° de réf. du vendeur 051363
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21. N° de réf. du vendeur 9783764328351
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783764328351_new
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 172 pp. Englisch. N° de réf. du vendeur 9783764328351
Quantité disponible : 1 disponible(s)