L'édition de cet ISBN n'est malheureusement plus disponible.
The structure and classification of reductive groups over arbitrary fields has become a standard part of mathematics, with broad connections to many aspects of group theory (Lie groups), number theory (Langlands program, arithmetic groups), algebraic geometry and invariant theory. The first ten chapters of this text cover the theory of linear algebraic groups over algebraically closed fields, culminating in the theory of reductive groups, and includes the uniqueness and existence theorems. Chapters 11-17 cover the theory of linear algebraic groups which are not algebraically closed. The last seven chapters deal with the Tits classification of simple groups. The work is concise and self-contained, and should appeal to a broad audience of graduate students and researchers in the field. It is suitable for use as a textbook for a course on the theory, and contains exercises.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
The first edition of this book presented the theory of linear algebraic groups over an algebraically closed field. The second edition, thoroughly revised and expanded, extends the theory over arbitrary fields, which are not necessarily algebraically closed. It thus represents a higher aim. As in the first edition, the book includes a self-contained treatment of the prerequisites from algebraic geometry and commutative algebra, as well as basic results on reductive groups. As a result, the first part of the book can well serve as a text for an introductory graduate course on linear algebraic groups.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
(Aucun exemplaire disponible)
Chercher: Créez une demandeVous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !
Créez une demande