Series of scalars, vectors, or functions are among the fundamental objects of mathematical analysis. When the arrangement of the terms is fixed, investigating a series amounts to investigating the sequence of its partial sums. In this case the theory of series is a part of the theory of sequences, which deals with their convergence, asymptotic behavior, etc. The specific character of the theory of series manifests itself when one considers rearrangements (permutations) of the terms of a series, which brings combinatorial considerations into the problems studied. The phenomenon that a numerical series can change its sum when the order of its terms is changed is one of the most impressive facts encountered in a university analysis course. The present book is devoted precisely to this aspect of the theory of series whose terms are elements of Banach (as well as other topological linear) spaces. The exposition focuses on two complementary problems. The first is to char- acterize those series in a given space that remain convergent (and have the same sum) for any rearrangement of their terms; such series are usually called uncon- ditionally convergent. The second problem is, when a series converges only for certain rearrangements of its terms (in other words, converges conditionally), to describe its sum range, i.e., the set of sums of all its convergent rearrangements.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : McCord Books, NORWALK, IA, Etats-Unis
hardcover. Etat : Good. Ex-library copy with usual markings, otherwise very good condition. N° de réf. du vendeur 231101052
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0316110058788
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783764354015_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Series of scalars, vectors, or functions are among the fundamental objects of mathematical analysis. When the arrangement of the terms is fixed, investigating a series amounts to investigating the sequence of its partial sums. In this case the theory of series is a part of the theory of sequences, which deals with their convergence, asymptotic behavior, etc. The specific character of the theory of series manifests itself when one considers rearrangements (permutations) of the terms of a series, which brings combinatorial considerations into the problems studied. The phenomenon that a numerical series can change its sum when the order of its terms is changed is one of the most impressive facts encountered in a university analysis course. The present book is devoted precisely to this aspect of the theory of series whose terms are elements of Banach (as well as other topological linear) spaces. The exposition focuses on two complementary problems. The first is to char acterize those series in a given space that remain convergent (and have the same sum) for any rearrangement of their terms; such series are usually called uncon ditionally convergent. The second problem is, when a series converges only for certain rearrangements of its terms (in other words, converges conditionally), to describe its sum range, i.e., the set of sums of all its convergent rearrangements. 159 pp. Englisch. N° de réf. du vendeur 9783764354015
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 172. N° de réf. du vendeur 263079210
Quantité disponible : 4 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. The beautiful Riemann theorem states that a series can change its sum after permutation of the terms. This work contains many exercises and unsolved problems as well as an appendix about the problems in vector-valued Riemann integration. It is suitable for graduate students and mathematicians interested in functional analysis. Series: Operator Theory: Advances and Applications. Num Pages: 167 pages, biography. BIC Classification: PBKF; PBM; PBP. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly. Dimension: 234 x 156 x 11. Weight in Grams: 930. . 1997. Hardback. . . . . N° de réf. du vendeur V9783764354015
Quantité disponible : 15 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Series of scalars, vectors, or functions are among the fundamental objects of mathematical analysis. When the arrangement of the terms is fixed, investigating a series amounts to investigating the sequence of its partial sums. In this case the theory of ser. N° de réf. du vendeur 5279125
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 172 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. N° de réf. du vendeur 5850101
Quantité disponible : 4 disponible(s)
Vendeur : BennettBooksLtd, Los Angeles, CA, Etats-Unis
hardcover. Etat : New. In shrink wrap. Looks like an interesting title! N° de réf. du vendeur Q-3764354011
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 172. N° de réf. du vendeur 183079200
Quantité disponible : 4 disponible(s)