Book by Polterovich Leonid
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 16 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisEUR 3,98 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Zubal-Books, Since 1961, Cleveland, OH, Etats-Unis
Etat : New. *Price HAS BEEN REDUCED by 10% until Monday, May 5 (weekend SALE item)* 148 pp., Paperback, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. N° de réf. du vendeur ZB1272192
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02196 9783764364328 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2488043
Quantité disponible : 1 disponible(s)
Vendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,400grams, ISBN:9783764364328. N° de réf. du vendeur 3898057
Quantité disponible : 1 disponible(s)
Vendeur : Plurabelle Books Ltd, Cambridge, Royaume-Uni
Paperback. Etat : As New. Series: Lectures in Mathematics. xii 132p slim paperback, shiny moss-green cover, like new condition, tight binding, no noticeable wear, all pages clean and bright like new, clear and sharp mathematical notation throughout, a splendid unused copy Language: English Weight (g): 560. N° de réf. du vendeur 233351
Quantité disponible : 1 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783764364328
Quantité disponible : 10 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783764364328
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783764364328_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. | Seiten: 148 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 679924/2
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The group of Hamiltonian diffeomorphisms Ham(M, 0) of a symplectic mani fold (M, 0) plays a fundamental role both in geometry and classical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic diffeomorphisms. From the viewpoint of mechanics, Ham(M,O) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian diffeomorphism I An attempt to formalize and answer this natural question has led H. Hofer [HI] (1990) to a remarkable discovery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between I and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M, 0). Since Hofer's work this new ge ometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and problems which come from the familiar finite dimensional geometry in the context of the group of Hamiltonian diffeomorphisms. They turn out to be very different from the usual circle of problems considered in symplectic topology and thus extend significantly our vision of the symplectic world. 136 pp. Englisch. N° de réf. du vendeur 9783764364328
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - The group of Hamiltonian diffeomorphisms Ham(M, 0) of a symplectic mani fold (M, 0) plays a fundamental role both in geometry and classical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic diffeomorphisms. From the viewpoint of mechanics, Ham(M,O) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian diffeomorphism I An attempt to formalize and answer this natural question has led H. Hofer [HI] (1990) to a remarkable discovery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between I and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M, 0). Since Hofer's work this new ge ometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and problems which come from the familiar finite dimensional geometry in the context of the group of Hamiltonian diffeomorphisms. They turn out to be very different from the usual circle of problems considered in symplectic topology and thus extend significantly our vision of the symplectic world. N° de réf. du vendeur 9783764364328
Quantité disponible : 1 disponible(s)