This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping ? ? u u =u u in ? ×(0, +?) ? tt ? ? ? ? u=0 on ? ×(0, +?) 0 (1. 1) ? ? u+g(u)=0 on ? ×(0, +?) ? t 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x), x? ?, t n where ? is a bounded domain of R, n? 1, with a smooth boundary ? = ? . 0 1 Here, ? and ? are closed and disjoint and ? represents the unit outward normal 0 1 to ?. Problems like (1. 1), more precisely, ? u u =?f (u)in? ×(0, +?) ? tt 0 ? ? ? ? u=0 on ? ×(0, +?) 0 (1. 2) ? ? u =?g(u )?f (u)on? ×(0, +?) ? t 1 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x), x? ?, t were widely studied in the literature, mainly when f =0, see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s), i=0,1, but assuming that f (s)s? 0, that is, f represents, for i i i each i, an attractive force.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 10 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 7,94 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Universitätsbuchhandlung Herta Hold GmbH, Berlin, Allemagne
2006. 16 x 24 cm. XII, 520 S. XII, 520 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. (Progress in Nonlinear Differential Equations and Their Applications). Sprache: Englisch. N° de réf. du vendeur 375ZB
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. xii + 518 1st Edition. N° de réf. du vendeur 26304584
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. xii + 518. N° de réf. du vendeur 7543319
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. xii + 518. N° de réf. du vendeur 18304578
Quantité disponible : 1 disponible(s)
Vendeur : Zubal-Books, Since 1961, Cleveland, OH, Etats-Unis
Etat : Fine. First edition, first printing, 518 pp., Hardcover, previous owner's small hand stamp to front free endpaper else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. N° de réf. du vendeur ZB1322669
Quantité disponible : 1 disponible(s)
Vendeur : Dorley House Books, Inc., Hagerstown, MD, Etats-Unis
Hardcover. Etat : Near Fine. 1st. 518 clean, unmarked pages; green pictorial c, First Edition, First Printing. N° de réf. du vendeur 033040
Quantité disponible : 1 disponible(s)
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-273402
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-342996
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping u u =|u| u in ×(0,+ ) tt u=0 on ×(0,+ ) 0 (1. 1) u+g(u)=0 on ×(0,+ ) t 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t n where is a bounded domain of R ,n 1, with a smooth boundary = . 0 1 Here, and are closed and disjoint and represents the unit outward normal 0 1 to . Problems like (1. 1), more precisely, u u = f (u)in ×(0,+ ) tt 0 u=0 on ×(0,+ ) 0 (1. 2) u = g(u ) f (u)on ×(0,+ ) t 1 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t were widely studied in the literature, mainly when f =0,see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s),i=0,1, but assuming that f (s)s 0, that is, f represents, for i i i each i, an attractive force. N° de réf. du vendeur 9783764371494
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping u u =|u| u in ×(0,+ ) tt u=0 on ×(0,+ ) 0 (1. 1) u+g(u)=0 on ×(0,+ ) t 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t n where is a bounded domain of R ,n 1, with a smooth boundary = . 0 1 Here, and are closed and disjoint and represents the unit outward normal 0 1 to . Problems like (1. 1), more precisely, u u = f (u)in ×(0,+ ) tt 0 u=0 on ×(0,+ ) 0 (1. 2) u = g(u ) f (u)on ×(0,+ ) t 1 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t were widely studied in the literature, mainly when f =0,see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s),i=0,1, but assuming that f (s)s 0, that is, f represents, for i i i each i, an attractive force. 518 pp. Englisch. N° de réf. du vendeur 9783764371494
Quantité disponible : 2 disponible(s)