Extremum Problems for Eigenvalues of Elliptic Operators - Couverture souple

Livre 2 sur 48: Frontiers in Mathematics

Henrot, Antoine

 
9783764377052: Extremum Problems for Eigenvalues of Elliptic Operators

Synopsis

Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. We also consider the case of functions of eigenvalues. We investigate similar questions for other elliptic operators, such as the Schrödinger operator, non homogeneous membranes, or the bi-Laplacian, and we look at optimal composites and optimal insulation problems in terms of eigenvalues.

Providing also a self-contained presentation of classical isoperimetric inequalities for eigenvalues and 30 open problems, this book will be useful for pure and applied mathematicians, particularly those interested in partial differential equations, the calculus of variations, differential geometry, or spectral theory.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9783764391430: Extremum Problems for Eigenvalues of Elliptic Operators

Edition présentée

ISBN 10 :  376439143X ISBN 13 :  9783764391430
Editeur : Springer, 2008
Couverture souple